Common Fixed Point Theorems for Three Selfmaps of a Complete S-Metric Space
Upender S
Associate Professor of Mathematics, Tara Government College (Autonomous), Sangareddy - 502001, India
Receiving Date:
2023-02-21
Acceptance Date:
2023-03-16
Publication Date:
2023-03-27
Download PDF
http://doi.org/10.37648/ijrst.v13i01.013
Abstract
Suppose (X, S) is a S- metric space and P, Q and T are selfmaps of X. If these three maps and the space X satisfy certain conditions, we shall prove that they have a unique common fixed point in this paper. As a consequence we deduce a common fixed point theorem for three selfmaps of a complete S- metric space. Further, we show that a common fixed point theorem for three selfmaps of a metric space proved by S. L. Singh and S. P. Singh ([9]) follows as a particular case of the theorem.
Keywords:
S-metric space; Compatible; Fixed point theorem
References
- Aliouche, A., Sedghi, S., & Shobe, N. (2012). A generalization of fixed point theorem in S-metric spaces. MatematiÄki Vesnik, *64*(249), 258–266. http://eudml.org/doc/253803
- Dhage, B. C. (1992). Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, *84*(4), 329–336.
- Dhage, B. C. (1999). A common fixed point principle in D-metric spaces. Bulletin of the Calcutta Mathematical Society, *91*(6), 475–480.
- Dhage, B. C., Pathan, A. M., & Rhoades, B. E. (2000). A general existence principle for fixed point theorems in Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, *23*(7), 441– 448. https://doi.org/10.1155/S0161171200001587
- Gahler, S. (1963). 2-metrische Raume und iher topoloische Struktur. Mathematische Nachrichten, *26*, 115–148.
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2004). On the topology of D-metric spaces and generalization of D-metric spaces from metric spaces. International Journal of Mathematics and Mathematical Sciences, *2004*(51), 2719–2740. https://doi.org/10.1155/S0161171204311257
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005a). On the concepts of balls in a D-metric spaces. International Journal of Mathematics and Mathematical Sciences, *2005*(1), 133– 141. https://doi.org/10.1155/IJMMS.2005.133
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005b). On convergent sequences and fixed point theorems in D-metric spaces. International Journal of Mathematics and Mathematical Sciences, *2005*(12), 1969– 1988. https://doi.org/10.1155/IJMMS.2005.1969
- Rhoades, B. E., Ahmad, B., & Ashraf, M. (2001). Fixed point theorems for expansive mappings in D-metric spaces. Indian Journal of Pure and Applied Mathematics, *32*(10), 1513–1518.
- Sedghi, S., Shobe, N., & Zhou, H. (2007). A common fixed point theorem in D*-metric spaces. Fixed Point Theory and Applications, *2007*, Article ID 27906. https://doi.org/10.1155/2007/27906
- Singh, S. L., & Singh, S. P. (1980). A fixed point theorem. Indian Journal of Pure and Applied Mathematics, *11*(12), 1584–1586.
Back