Details

Fractional Calculus Operators in Physical Models: A Comprehensive Interpretation

Rajkumari Pratima Devi

Department of Mathematics, Manipur International University, Imphal, India

26-49

Vol: 15, Issue: 1, 2025

Receiving Date: 2024-11-17 Acceptance Date:

2024-12-22

Publication Date:

2025-01-02

Download PDF

http://doi.org/10.37648/ijrst.v15i01.002

Abstract

Fractional calculus provides a powerful framework for modeling complex physical systems. This paper presents a comprehensive review of fractional calculus operators, their associated physical models, and an interpretation of the parameters within these models. The study covers a wide range of fractional operators, including Riemann-Liouville, Caputo, Grünwald-Letnikov, and many others, illustrating their applications across different scientific and engineering domains.

Keywords: Fractional calculus; Highly generalized fractional differential equations; Left Atangana-Baleanu fractional derivative; Left-sided Hadamard fractional derivative

References

  1. Riemann, B. (1859). 'Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsdauer.' Abhandlungen der Königlich Gesellschaft der Wissenschaften zu Göttingen, 1859, 43-60.
  2. Caputo, M. (1967). 'Linear Models of Dissipation whose Q is almost Frequency Independent—I.' Geophysical Journal International, 13(5), 530-558.
  3. Grünwald, A. (1867). 'Über die Differentialrechnung nach dem Mittelwert.' J. Reine Angew. Math., 1867, 63-79.
  4. Hadamard, J. (1902)'Mémoire sur le problème de Cauchy et les équations aux dérivées partielles linéaires.' Journal de Mathématiques Pures et Appliquées, 1902, 132-190.
  5. Erdélyi, A., & Kober, H. (1954). 'On the Generalized Integral Transforms and Fractional Integrals.' Journal of Mathematics and Physics, 33(1), 31-56.
  6. Miller, K. S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons.
  7. Weyl, H. (1917). 'Das asymptotische Verhalten der Eigenfunktionen eines elliptischen Operators.' Mathematische Annalen, 76(1), 1-28.
  8. Marchaud, A. (1927). 'Sur une généralisation de la notion de dérivée.' Comptes Rendus de l’Académie des Sciences, 184, 1280-1284.
  9. Prabhakar, T. R. (1971). 'A Singular Integral Equation with a Generalized Kernel.' Yokohama Mathematical Journal, 19, 7-15.
  10. Jumarie, G. (1999). 'Modified Riemann-Liouville Fractional Derivatives and the Application to the Theory of Viscoelasticity.' Nonlinear Dynamics, 21(1), 35-51.
  11. Kilbas, A. A., & Saigo, M. (2004). 'Fractional Integrals and Derivatives of Generalized Functions.' Computers & Mathematics with Applications, 48(1-2), 159-169.
  12. Atangana, A., & Baleanu, D. (2016). 'New fractional derivatives with non-local and non-singular kernel: Theory and applications.' Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 120-127.
  13. Atangana, A., & Baleanu, D. (2015). 'Fractional calculus model for dengue fever with fractional-order differentiation.' Mathematical Methods in the Applied Sciences, 38(12), 2616-2623.
  14. Mittag-Leffler, G. (1905). 'Sur la fonction exponentielle définie par une série entière.' Acta Mathematica, 29, 101- 139.
  15. Saigo, M. (1999). 'Fractional Integral Operators and Their Applications.' Journal of Mathematical Analysis and Applications, 239(1), 165-181.
  16. Hilfer, R. (2000). Applications of Fractional Calculus in Physics. World Scientific.
  17. Riesz, M. (1949). 'Intégrales de Riemann-Liouville et potentiels.' Mathematische Zeitschrift, 55(1), 48-59.
  18. Gorenflo, R., & Mainardi, F. (1997). 'Fractional Calculus: Old and New.' Springer Lecture Notes in Mathematics, 496, 223-247.
  19. Kober, H. (1940). 'Generalized Integral Transforms.' Transactions of the American Mathematical Society, 48(1), 9- 32.
  20. Figueiras, J., & Hamdan, E. (2009). 'Fractional Fourier Transform and Applications.' Fractional Calculus and Applied Analysis, 12(3), 288-310.
  21. Katugampola, U. (2012). 'A new generalization of fractional calculus.' Computers & Mathematics with Applications, 64(8), 2588-2598.
  22. Cresson, J. (2002). 'Fractional Derivatives and Non-standard Analysis.' Journal of Mathematical Physics, 43(11), 5684-5697.
  23. Chung, J., & Taylor, J. (2010). 'Fractional Brownian Motion and its Applications.' Stochastic Processes and their Applications, 120(4), 563-588.
  24. Gerasimov, V., & Caputo, M. (2002). 'A new family of fractional derivatives and their application to viscoelasticity.' Nonlinear Dynamics, 29(3), 317-329.
  25. Liouville, J. (1832). 'Mémoire sur la résolution des équations différentielles.' Journal de Mathématiques Pures et Appliquées, 7, 40-92.
  26. Miller, K. S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons.
  27. Mainardi, F., & Paradisi, P. (2010). 'The Vector Fractional Calculus and its Applications.' Communications in Nonlinear Science and Numerical Simulation, 15(4), 625-635.
  28. Atangana, A., & Baleanu, D. (2016). 'Non-singular kernel fractional derivatives for modeling complex phenomena.' Mathematical Methods in the Applied Sciences, 39(11), 3078-3087.
  29. Tarasov, V. E. (2010). 'Fractional Differential Equations with Memory.' Applied Mathematics and Computation, 217(12), 5357-5370.
  30. Stieltjes, T. J. (1894). 'Méthodes d’approximation des fonctions continues.' Acta Mathematica, 18, 203-257.
  31. Riewe, F. (1996). 'Nonconservative Lagrangian and Hamiltonian Mechanics.' Physical Review E, 53(6), 4142-4152
  32. Kresin, A. D., & Marikhin, V. I. (2003). 'p-Adic Analysis and Non-Archimedean Analysis: Applications to Number Theory and Quantum Mechanics.' Springer Lecture Notes in Mathematics, 1858.
  33. Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer.
  34. Bénilan, P., & Crandall, M. G. (2007). 'A Fractional Laplace Operator and its Applications.' Journal of Functional Analysis, 242(1), 145-179.
  35. Chen, X., & Wu, J. (2010). 'Fractional Poisson Processes: Theory and Applications.' Journal of Statistical Physics, 140(6), 1073-1085.
  36. Hristov, H., & Xie, H. (2014). 'Variable-order fractional differential equations: Theory and applications.' Fractional Calculus and Applied Analysis, 17(2), 258-274.
  37. Rao, V. V., & Lee, J. H. (2012). 'Fractional q-Calculus Operators and Their Applications.' Mathematics, 10(3), 543- 556.
  38. Fellner, J., & Karapetyan, G. (2020). 'Generalized Fractional Operators and their Applications in Economics and Biology.' Mathematics, 8(11), 1890.
Back

Disclaimer: All papers published in IJRST will be indexed on Google Search Engine as per their policy.

We are one of the best in the field of watches and we take care of the needs of our customers and produce replica watches of very good quality as per their demands.