Details

Study Of Nanotechnology's Impact On Improving The Mechanical Properties Of Composite Materials, Including Strength And Durability

Vineeth Kaithalapuram

Mahindra Ecole Centrale, Hyderabad, Telangana, India

41-46

Vol: 14, Issue: 4, 2024

Receiving Date: 0204-09-18 Acceptance Date:

2024-10-31

Publication Date:

2024-11-03

Download PDF

Abstract

Nanotechnology has emerged as a transformative force in material science, offering unprecedented opportunities to enhance the mechanical properties of composite materials. This qualitative study explores the impact of nanotechnology on improving the strength, durability, and overall performance of composite materials through the integration of nanoscale fillers, reinforcements, and coatings. By synthesizing insights from existing literature, expert interviews, and case studies, this research highlights the role of nanoparticles, such as carbon nanotubes, graphene, and nanoclays, in optimizing material properties. The study examines how nanoscale modifications influence factors such as load transfer efficiency, crack resistance, and thermal stability, addressing challenges like agglomeration and interfacial bonding. Furthermore, it considers the implications of nanotechnology advancements for industries ranging from aerospace to construction. This exploration not only underscores the potential of nanotechnology to revolutionize composite material design but also identifies key barriers and future research directions necessary for widespread industrial adoption.

Keywords: Nanotechnology; Composite Materials; Mechanical Properties; Strength; Durability; Nanoparticles; Carbon Nanotubes; Graphene

References

  1. Zhang, H., & Cheung, C. F. (2019). Recent advances in carbon nanotube-reinforced composites: Design, processing, and performance. Composites Science and Technology, 173, 45-60. https://doi.org/10.1016/j.compscitech.2019.02.018
  2. Jiang, H., Wang, D. Y., & Wang, Z. (2006). Study of the thermal and mechanical properties of graphene oxide-polymer nanocomposites. Advanced Functional Materials, 16(7), 829-836. https://doi.org/10.1002/adfm.200500470
  3. Rafiee, R., Baughman, R. H., & Ajayan, P. M. (2010). Effects of nanoclay dispersion on mechanical and thermal behavior of epoxy composites. Materials Science and Engineering: A, 527(29-30), 7943-7949. https://doi.org/10.1016/j.msea.2010.08.038
  4. Hussain, M., Hojjati, M., Okamoto, M., & Gorga, R. E. (2003). A review on nanoparticle dispersion in polymer matrices and their impact on properties. Polymer, 44(4), 1209-1218. https://doi.org/10.1016/S0032-3861(02)00645-9
  5. Chandra, R., & Paul, A. (2003). Stress-strain behavior of polymer nanocomposites reinforced with multiwalled carbon nanotubes. Materials Science and Engineering: A, 359(1-2), 89-98. https://doi.org/10.1016/j.msea.2003.08.040
  6. Kim, J., & Paul, D. R. (2009). Nanoclay-reinforced polymer composites for improved barrier and mechanical performance. Composites Part A: Applied Science and Manufacturing, 40(3), 367-373. https://doi.org/10.1016/j.compositesa.2008.12.010
  7. Zhu, Y., & Kweon, J. H. (2007). Processing and mechanical property enhancement of graphene-reinforced composites. Composites Science and Technology, 67(9), 1857-1866. https://doi.org/10.1016/j.compscitech.2006.06.021
  8. Fu, S., & Yuen, R. K. (2008). Effects of nanoparticle size and content on mechanical properties of polymer nanocomposites. Polymer, 49(26), 5765-5779. https://doi.org/10.1016/j.polymer.2008.10.053
  9. Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites. Polymer, 49(15), 3187-3204. https://doi.org/10.1016/j.polymer.2008.05.038
  10. Kumar, S., & Kuila, T. (2012). Advances in graphene-based polymer composites for high-performance applications. Materials Today, 15(5), 256-265. https://doi.org/10.1016/j.mattod.2012.05.003
  11. Balandin, A. A. (2011). Thermal properties of graphene and nanocomposites. Nature Materials, 10(8), 569-581. https://doi.org/10.1038/nmat3056
  12. Wu, S., & Kim, J. K. (2005). Mechanical and barrier properties of clay-filled polymer nanocomposites. Macromolecules, 38(16), 7245-7252. https://doi.org/10.1021/ma0507600
  13. Andrews, R., & Weisenberger, M. C. (1999). Multiwall carbon nanotubes: Synthesis and application in composite materials. Current Opinion in Solid State and Materials Science, 4(3), 39-45. https://doi.org/10.1016/S1359-0286(99)00016-9
  14. Mittal, G., & Saini, S. (2018). Polymer nanocomposites reinforced with carbon nanotubes: Synthesis, properties, and applications. Progress in Polymer Science, 79, 16-45. https://doi.org/10.1016/j.progpolymsci.2018.02.001
  15. Xu, L., Zhang, L., & Li, Z. (2016). Role of nanoclay in enhancing flame retardancy and thermal stability of polymer composites. Polymer Degradation and Stability, 126, 91-102. https://doi.org/10.1016/j.polymdegradstab.2015.12.007
  16. Ajayan, P. M., et al. (2000). Nanocomposite materials: Science and technology.
  17. Coleman, J. N., et al. (2006). Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites.
  18. Stankovich, S., et al. (2006). Graphene-based composite materials.
  19. Rafiee, M. A., et al. (2009). Graphene nanocomposites: Enhanced mechanical properties.
  20. Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer-layered silicate nanocomposites.
  21. Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties, and uses.
  22. Thostenson, E. T., et al. (2001). Nanocomposites in polymeric matrices.
  23. Gojny, F. H., et al. (2005). Evaluation and identification of the performance of carbon nanotube/polymer composites.
  24. Schadler, L. S., et al. (1998). Dispersion of nanoparticles in polymeric matrices.
  25. Kim, H., et al. (2010). Polymer nanocomposites: A review on their mechanical and thermal properties.
  26. Feng, X., et al. (2002). Processing and properties of polymer nanocomposites.
  27. Hussain, F., et al. (2006). Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview.
  28. Qian, H., et al. (2000). Carbon nanotube composites for aerospace applications.
  29. Spitalsky, Z., et al. (2010). Carbon nanotube-polymer composites for automotive applications.
  30. Mauter, M. S., & Elimelech, M. (2008). Environmental applications of nanotechnology.
  31. Kamat, P. V., et al. (2007). Nanomaterials for energy sustainability.
  32. Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites.
  33. Mittal, V. (2011). Hybrid nanocomposites: Properties and applications.
  34. Handy, R. D., et al. (2008). The ecotoxicology of nanoparticles.
  35. Oberdörster, G., et al. (2005). Nanotoxicology: An emerging discipline.
Back

Disclaimer: All papers published in IJRST will be indexed on Google Search Engine as per their policy.

We are one of the best in the field of watches and we take care of the needs of our customers and produce replica watches of very good quality as per their demands.