Details

Fundamentals of Sensors, Materials and Methods: A Review

Snehal D Patil

Dept. of Physics, Vivekananda Global University, Jaipur, India

Harshal A Nikam

Dept. of Physics, Vivekananda Global University, Jaipur, India

Y C Sharma

Dept. of Physics, Vivekananda Global University, Jaipur, India

D B Salunkhe

Dept. of Physics, Kisan College, Parola, Jalgaon, India

U S Jagtap

Dept. of Physics, D. N. College Faizpur, Jalgaon, India

S B Girase

Dept. of Physics, SPDM College, Shirpur

D R Patil

Bulk and Nanomaterials Research Lab. Dept. of Physics, R. L. College, Parola, Jalgaon, India

25-40

Vol: 12, Issue: 2, 2022

Receiving Date: 2022-03-14 Acceptance Date:

2022-04-27

Publication Date:

2022-05-03

Download PDF

http://doi.org/10.37648/ijrst.v12i02.005

Abstract

The number of materials, methods and monitors are available for monitoring hazardous, toxic and inflammable gases. Bulk and nanoscaled material powders were utilized for fabricating the gas monitors, out of which, the nanoscaled materials show the challenging response to such gases. Thick film sensors exhibit the crucial response to such polluting gases which can be attributed with the porous nature of the film. This review paper shows the detailed study about the materials and monitors already available in the field.

Keywords: Nanoscaled Material; Thick Films; Gas Monitor

References

  1. https://en.wikipedia.org/wiki/Gas_detector.
  2. C. Wagner, J. Chem. Phys. 18 (1950) pp. 69.
  3. W. H. Brattein, J. Bardeen, Surface properties of germanium, Bell. Syst. Tec. J. 32 (1953) pp. 1-41.
  4. T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semicondutive thin films, Anal. Chem. 34 (1962) pp. 1502-1503.
  5. N. Taguchi, Japanese patent application, 1962.
  6. http://www.figarosensor.com, https://www.figaro.co.jp/en/.
  7. G. Shaddick, M. L. Thomas, P. Mudu, G. Ruggeri, S. Gumy, Half the world’s population are exposed to increasing air pollution, npj Clim Atmos Sci 3 (2020) https://doi.org/10.1038/s41612-020-0124-2.
  8. Zou ji, Rising pollution in the developing world, Outlook on the Global Agenda (2015) pp. 23-25.
  9. J. Chen, C. Li, Z. Ristovski, A. Milic, Y. Gu, M. Islam, et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China, Science of The Total Environment 579 (2017) pp. 1000-1034.
  10. C. Losacco, A. Perillo, Particulate matter air pollution and respiratory impact on humans and animals, Environ. Sci. Pollut. Res. 25 (2018) pp. 33901–33910.
  11. L. G. Costa, T. B. Cole, K. Dao, Y. C. Chang, J. Coburn, J. M. Garrick, Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders, Pharmacol. Ther. 210 (2020) pp. 107523.
  12. https://www.osha.gov/sites/default/files/publications/carbonmonoxide-factsheet.pdf.
  13. Air Quality Guideline: WHO Regional Office for Europe, Copenhagen, Denmark 2000.
  14. C. F. Cullis, M. M. Hirschler, Man’s emissions of carbon monoxide and hydrocarbons into the atmosphere, Atmospheric environment 23 (1989) pp. 1195–1203.
  15. https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=249&toxid=46.
  16. D. R. Patil, Studies on ZnO based gas sensors, Ph. D. Thesis, North Maharashtra University, Jalgaon, Chapter 1 (2007) pp. 01-55.
  17. https://www.cdc.gov/niosh/topics/hydrogensulfide/default.html#:~:text=Exposure%20to%20hydrogen%20sulfide%20may,from%20exposure%20to%20hydrogen%20sulfide.
  18. Y. Chen, P. Xu, T. Xu, D. Zheng, X. Li, ZnO-nanowire size effect induced ultra high sensing response to ppb-level H2S, Sens. Actuators B 240 (2017) pp. 264-272.
  19. F. Huber, S. Riegert, M. Madel, K. Thonke, H2S sensing in the ppb regime with zinc oxide nanowires, Sens. Actuators B 239 (2017) pp. 358-363.
  20. R. S. Pandav, A, S, Tapase, P. P. Hankare, G. B. Shelke, D. R. Patil, Nanocrystalline manganese substituted nickel ferrite thick films as ppm level H2S gas sensors, Intern. J. on Recent and Innovation Trends in Computing and Communication 3 (8) (2015) pp. 5152 – 5156.
  21. http://www.icopal-noxite.co.uk/nox-problem/nox-pollution.aspx.
  22. Colin Finn, Sorcha Schnittger, Lesley J. Yellowlees, Jason B. Love, Molecular approaches to the electrochemical reduction of carbon dioxide Chemical Communications 48 (2012) pp. 1392-1399.
  23. Monastersky, A burden beyond bearing, Nature 458 (2009) pp. 1091–1094.
  24. Air Pollutant Emission Factors, Final Report, Contract No. CPA-22-69-119, Resources Research, Inc., Reston, VA, Durham, NC, April 2009.
  25. https://www.lung.org/clean-air/at-home/indoor-air-pollutants/volatile-organic-compounds#:~:text=VOCs%20Can%20Harm%20Health,Some%20VOCs%20can%20cause%20cancer.
  26. https://www.flogas.co.uk/lpg-properties-hazards
  27. https://www.fairtrading.nsw.gov.au/trades-and-businesses/construction-and-trade-essentials/gasfitters/dangers-of-exposure-to-lpg
  28. https://www.pgworks.com/uploads/pdfs/LNGSafetyData.pdf
  29. https://www.ncbi.nlm.nih.gov/books/NBK537213/
  30. https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm#:~:text=Exposure%20to%20high%20concentrations%20of,and%20nose%20and%20throat%20irritation.
  31. https://www.ehs.com/2014/04/ethanol-versatile-common-and-potentially-dangerous/#:~:text=Even%20though%20ethanol%20is%20very,can%20cause%20coma%20and%20death.
  32. https://economictimes.indiatimes.com/industry/energy/oil-gas/india-becomes-worlds-2nd-largest-lpg-consumer-after-governments-ujjawla-push/articleshow/67849012.cms?from=mdr
  33. K. Aishwarya, R. Nirmala, R. Navamathavan, Recent advances in liquefied petroleum gas sensors: A topical review, Sensors international 2 (2021) pp. 100091.
  34. N. H. Proctor, J. P. Hughes, M. L. Fischman, liquified petroleum gas in chemical hazards of the workplace, 2nd ed. Philadelphia, PA: J. B. Lippincott Company (1988) pp. 301, 420-421.
  35. https://www.wermac.org/safety/safety_what_is_lel_and_uel.html
  36. https://www.cdc.gov/niosh/npg/npgd0679.html
  37. https://www.pgworks.com/uploads/pdfs/LNGSafetyData.pdf
  38. http://www.nereusalarms.co.uk/html/dangers_of_lpg___pv.html
  39. S. A. Waghuley, A. R. Choudhary, LPG Sensing applications of ex-situ application of Bi2O3 Nanocomposite, IJPAP 56 (2018) pp. 423 - 427.
  40. Pallavi T. Patil, Rajshri S. Anwane, Subhash B. Kondawar, Development of electrospun polyaniline / ZnO composite nanofibers for LPG sensing, Procedia Materials Science 10 (2015 ) pp. 195 – 204.
  41. L. P. Chikhale, J. Y. Patil, A. V. Rajgure, R. C. Pawar, I. S. Mulla, S. S. Suryavanshi, Synthesis, characterization and LPG response of Pd loaded Fe doped tin oxide thick films, J. Alloys and Compounds 608 (2014) pp. 133–140.
  42. Chikhale L. P., Patil J. Y., Rajgure A. V., Pawar R. C., Mulla I. S., Suryavanshi S. S., Synthesis, characterization and LPG response of Pd loaded Fe doped tin oxide thick films, J. Alloys and Compounds 608 (2014) pp. 133–140.
  43. Mansi Dhingra, N. K. Singh, Sadhna Shrivastav, P. Senthil Kumar, S. Annapoorni, Worm like zinc oxide nanostructures as efficient LPG sensors, Sens. Actuators A 190 (2013) pp. 168–175.
  44. K. R. Nemade, S. A. Waghuley, Gas sensing mechanism of metal oxide doped PANI composites, J. Mater. Sci. Engg. B 3 (2013) pp. 310-313.
  45. K. R. Nemade, S. A. Waghuley, LPG sensing application of graphene / Bi2O3 quantum dots composites, Solid State Sciences 22 (2013) pp. 27-32.
  46. A. V. Patil, C. G. Dighavkar, S. K. Sonawane, S. J. Patil, R. Y. Borse, Formulation and characterization of Cu doped ZnO thick films as LPG gas sensor, Sens. Transducers 9 (Sp. Issue) (2010) pp. 11-20.
  47. D. R. Patil, L. A. Patil, Cr2O3-modified ZnO thick film resistors as LPG sensors, Talanta 77 (2009) pp. 1409–1414.
  48. Fawzy A. Mahmoud, G. Kiriakidis, Nanocrystalline ZnO thin films for gas sensor application, J. Ovonic Research 5 (2009) pp. 15-19.
  49. J. Yu, Z. A. Tang, G. Z. Yan, P. C H. Chan, Z. X. Huang, An experimental study on micro-gas sensors with strip shape tin oxide thin films, Sens. Actuators B 139 (2009) pp. 346-352.
  50. R. R. Salunkhe, D. S. Dhawale, D. P. Dubal, C. D. Lokhande, Sprayed CdO thin films for liquefied petroleum gas (LPG) detection, Sens. Actuators B 140 (2009) pp. 86-91.
  51. Shalaka C. Navale, S. W. Gosavi, I. S. Mulla, Controlled synthesis of ZnO from nanospheres to micro-rods and its gas sensing studies, Talanta 75 (2008) pp. 1315-1319.
  52. P. P. Sahay, R. K. Nath, Al-doped Zinc Oxide thin films for liquefied petroleum gas (LPG) sensors, Sens. Actuators B 133 (2008) pp. 222-227.
  53. R. R. Salunkhe, C. D. Lokhande, Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films, Sens. Actuators B 129 (2008) pp. 345-351.
  54. R. R. Salunkhe, V. R. Shinde, C. D. Lokhande, Liquefied petroleum gas sensing properties of nanocrystalline CdO thin films prepared by chemical route: effect of molarities of precursor solution, Sens. Actuators B 133 (2008) pp. 296-301.
  55. Liang-Dong Feng, Xing-Jiu Huang, Yang-Kyu Choi, Dynamic determination of domestic LPG down to several ppm levels using a Sr-doped SnO2 thick film gas sensor, Microchimica Acta 156 (2007) pp. 245-251.
  56. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, Surface customization of SnO2 thick films using RuO2 as a surfactant for the LPG response, Sens. Actuators B 122 (2007) pp. 357-364.
  57. V. R. Shinde, T. P. Gujar, C. D. Lokhande, LPG sensing properties of ZnO films prepared by spray pyrolysis method: Effect of molarity of precursor solution, Sens. Actuators B 120 (2007) pp. 551–559.
  58. V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, Sung-Hwan Han, Use of chemically synthesized ZnO thin film as liquefied petroleum gas sensor, Mater. Sci. Engg. B 137 (2007) pp. 119–125.
  59. D. R. Patil, L. A. Patil, G. H. Jain, M. S. Wagh, S. A. Patil, Surface activated ZnO thick film resistors for LPG gas sensing, Sens. Transducers 74 (2006) pp. 874 -883.
  60. P. Mitra, H. S. Maiti, A wet-chemical process to form palladium oxide sensitizer layer on thin film ZnO based LPG sensor, Sens. Actuators B 97 (2004) pp. 49-58.
  61. P. Nunes, E. Fortunato, A. Lopes, R. Martins, Influence of the deposition conditions on the gas sensitivity of zinc oxide thin films deposited by spray pyrolysis, Int. J. of Inorg. Mater 3 (2001) pp. 1129-1131.
  62. J. Xu, Q. Pan, Y. Shun, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B 66 (2000) pp. 277-279.
  63. P. Mitra, A. P. Chatterjee, H. S. Maiti, ZnO thin film sensor, Mater. Lett. 35 (1998) pp. 33-38.
  64. Akash Katoch, Sun-Woo Choi, Hyoun Woo Kim, Sang Sub Kim, Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism, J. Hazardous Materials 286 (2015) pp. 229–235.
  65. Sunghoon Park, Gun-Joo Sun, Chongmu Lee, UV-assisted room temperature-gas sensing of Ga2O3-core / ZnO-shell nanowires, J. Cera. Process. Res. 16 (2015) pp. 367-371.
  66. Artem Marikutsa, Marina Rumyantseva, Alexander Baranchikov, Alexander Gaskov, Nanocrystalline BaSnO3 as an alternative gas sensor material, Surface reactivity and high sensitivity to SO2, Materials 8 (2015) pp. 6437-6454.
  67. S. Kishimoto, S. Akasmatsu, H. Song, J. Nomoto, H. Makino, T. Yamamoto, carbon monoxide gas sensing properties of Ga-doped ZnO film grown by ion plating with DC arc discharge, J. Sens. Sens. Syst. 3 (2014) pp. 331-334.
  68. M. Hjiri, L. El Mir, S. G. Leonardi, A. Pistonec, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors, Sens. Actuators B 196 (2014) pp. 413 – 420.
  69. C. Baratto, R. Kumar, E. Comini, G. Faglia, G. Sberveglieri, Gas sensing study of ZnO nanowire heterostructured with NiO for detection of pollutant gases, Procedia Engg. 87 (2014) pp. 1091 – 1094.
  70. C. Shao, Y. Chang, Y. Long, High performance of nanostructured ZnO film gas sensor at room temperature, Sens. Actuators B 204 (2014) pp. 666–672.
  71. Ching-Feng Li, Chia-Yen Hsu Yuan-Yao Li, NH3 sensing properties of ZnO thin films prepared via sol–gel method, J. Alloys and Compounds 606 (2014) pp. 27–31.
  72. Sukon Phanichphant, Semiconductor metal oxides as hydrogen gas sensors, Procedia Engg. 87 (2014) pp. 795 – 802.
  73. D. C. Pugh, gas sensing properties of Zeolite based ZnO Films, J. Mat. Chem. A 2 (2014) pp. 4758–4764.
  74. Vivek Talwar, Onkar Singh, Ravi Chand Sing, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor, Sens. Actuators B 191 (2014) pp. 276–282.
  75. N. Vorobyeva, M. Rumyantseva, D. Filatova, E. Konstantinova, D. Grishina, A. Abakumov, S. Turner, A. Gaskov, Nanopcrystalline ZnO (Ga): Paramagnetic centers, surface acidity and gas sensor properties, Sens. Actuators B 182 (2013) pp. 555-564.
  76. Chandrakant Dighavkar, Characterizations of nanosized zinc oxide based ammonia gas sensors, Arch. Appl. Sci. Res. 5 (6) (2013) pp. 96-102.
  77. K. Mirabbaszadeh, M. Mehrabian, Synthesis and properties of ZnO Nanorods as ethanol gas sensors, Phys. Scr. 85 (2012) 035701 (8pp).
  78. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor for ethanol detection, Sens. Actuators B 162 (2012) pp. 237–243.
  79. Sunghoon Park, Soyeon An, Hyunsung Ko, Changhyun Jin, Chongmu Lee, Enhanced gas sensing properties of Bi2O3-core / In2O3-shell nanorod gas sensors, Bull. Korean Chem. Soc. 33 (2012) pp. 3368-3372.
  80. Duy-Thach Phan, Gwiy-Sang Chung, CO gas sensing using Ga doping ZnO nanorods by hydrothermal method, Effects of defects-controlled, IMCS (2012) pp. 1070-1072.
  81. Bagal L. K., Patil J. Y., Mulla I. S., Suryavanshi S. S., Studies on the resistive response of nickel and cerium doped SnO2 thick films to acetone vapour, Ceramics International 38 (2012) pp. 6171–6179.
  82. S. Hemmati, A. A. Firooz, A. A. Khodadadi, Y. Mortazavi, Nanostructured SnO2–ZnO sensors: highly sensitive and selective to ethanol, Sens. Actuators B 160 (2011) pp. 1298–1303.
  83. J. Chen, K. Wang, W. Zhou, Vertically aligned ZnO nanorod arrays coated with SnO2 / noble metal nanoparticles for highly sensitive and selective gas detection, IEEE Trans. Nanotechnol. 10 (5) (2011) pp. 968 - 974.
  84. M. A. Alim, A. K. Batra, M. D. Aggarwal, James R. Currie, Immittance response of the SnO2–Bi2O3 based thick-films, Physica B 406 (2011) pp. 1445–1452.
  85. Safura Taufik, Nor Azah yusof, Tan Wee Tee, Iamawati Ramli, Bismuth oxide nanoparticales / chitosan / modified electrode as biosensor for DNA hybridization, Int. J. Electrochem. Sci. 6 (2011) pp. 1880-1891.
  86. A. Periasamy, S. Yang, Shen-Ming Chen, Preparation and characterization of bismuth oxide nanoparticles-multi walled carbon nanotube composite for the development of horse-radish peroxidase based H2O2 biosensor, Talanta 87 (2011) pp. 15– 23.
  87. Hsiao-Wen Zan, Chang-Hung Li, Chun-Cheng Yeh, Ming-Zhi Dai, Hsin-Fei Meng, Chuang-Chuang Tsai, Room-temperature- operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors, Appl. Phys. Lett. 98 (2011) pp. 1-3.
  88. Hyojin Kim, Nguyen Le Hung, Eunseong Ahn, Hooncheol Jung, Dojin Kim, Synthesis and gas sensing properties of ZnO nanostructures, J. Korean Phys. Soc. 57 (2010) pp. 1784-1788.
  89. M. C. Carottaa, A. Cervi, V. Natale, S. Gherardi, A. Giberti, V. Guidi, et al., ZnO gas sensors: A comparison between nanoparticles and nanotetrapods-based thick films, Sens. Actuators B 137 (2009) pp. 164–169.
  90. C. D. Lokhande, P. M. Gondkar, R. S. Mane, V. R. Shinde, Sung-Hwan, CBD grown ZnO-based gas sensors and dye-sensitized solar cells, J. Alloys and Compounds 475 (2009) pp. 304–311.
  91. J. H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sens. Actuators B 140 (2009) pp. 319–336.
  92. Ning Han, Yajun Tian, Xiaofeng Wu, Yunfa Chen, Improving humidity selectivity in formaldehyde gas sensing by two-sensor array made of Ga- doped ZnO, Sens. Actuators B 138 (2009) pp. 228-235.
  93. J. Yu, Z. A. Tang, G. Z. Yan, P. C H. Chan, Z. X. Huang, An experimental study on micro-gas sensors with strip shape tin oxide thin films, Sens. Actuators B 139 (2009) pp. 346-352.
  94. H. Liu, S. P. Gong, Y. X. Hu, J. Q. Liu, D. X. Zhou, Properties and mechanism study of SnO2 nanocrystals for H2S thick-fim sensors, Sens. Actuators B 140 (2009) pp. 190-195.
  95. Shalaka C. Navale, I. S. Mulla, Photoluminescence and gas sensing study of nanostructured pure and Sn doped ZnO, Mater. Sci. Eng. C (2009) pp. 1317-1320.
  96. Chao Li, Zhishuo Yu, Shaoming Fang, Shide Wu, Yanghai Gui, Rong feng Chen, Synthesis and gas-sensing properties of Ce-doped SnO2 materials, J. Physics: Conference Series 152 (2009) pp. 1-5.
  97. X. Du, S. M. George, Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition, Sens. Actuators B 135 (2008) pp. 152-160.
  98. F. V. Farmakis, Th. Speliotis, K. P. Alexandrou, C. Tsamis, M. Kompitsas, I. Fasaki, P. Jedrasik, G. Peterson, B. Nilson, Field-effect transistors with thin ZnO as active layer for gas sensor applications, Microelectr. Engg. 85 (2008) pp. 1035–1038.
  99. Young Ho Park, Hye-Kyung Song, Chang-Seop Lee, Jong-Gi Jee, Fabrication and its characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting dichloromethane, J. Industrial and Engineering Chemistry 14 (2008) pp. 818–823.
  100. A. Z. Sadek, W. Wlodarski, Y. X. Li, W. Yu, X. Li, X. Yu, K. Kalantar-zadeh, A ZnO nanorod based layered ZnO/64o YX LiNbO3 SAW hydrogen gas sensor, Thin Solid films 515 (2007) pp. 8705-8708.
  101. C. M. Ghimbeu, J. Schoonman, M. Lumbreras, M. Siadat, Electrostatic spray deposited zinc oxide films for gas sensor applications, Appl. Surf. Sci. 253 (2007) pp. 7483–7489.
  102. Ting-Jen Hsueh, Cheng-Liang Hsu, Shoou-Jinn Chang, I-Cherng Chen, Laterally grown ZnO nanowire ethanol gas sensors, Sens. Actuators B 126 (2007) pp. 473–477.
  103. Abhilasha Srivastava, Rashmi Kiran Jain, Study on ZnO-doped tin oxide thick film gas sensors, Mat. Chem. Phys. 105 (2007) pp. 385–390.
  104. A. Motenegro, M. Ponce, M. Castro, J. E. Rodriguez-Paez, SnO2- Bi2O3 and SnO2- Sb2O3 gas sensors obtained by soft chemical method, J. Eur. Cer. Soc. 27 (2007) pp. 4143-4146.
  105. V. V. Kovalenko, A. A. Zhukova, M. N. Rumayantseva, A. M. Gaskov, V. V. Yushchenko, I. I. Ivanova, T. Pagnier, Surface chemistry of nanocrystalline SnO2: Effect of thermal treatment and additives, Sens. Actuators B 126 (2007) pp. 52-55.
  106. A. Helwig, G. Muller, G. Sberveglieri, G. Faglia, Gas response times of nano-scale SnO2 gas sensor as determined by moving gas outlet technique, Sens. Actuators B 126 (2007) pp. 174-180.
  107. D. R. Patil, L. A. Patil, D. P. Amalnerkar, Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors, Bull. Mater. Sci.-Springer link 30 (2007) pp. 553-559
  108. D. R. Patil, L. A. Patil, P. P. Patil, Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature, Sens. Actuators B 126 (2007) pp. 368–374.
  109. G. Sarala Devi, V. Bala Subrahmanyam, S. C. Gadakari, S. K. Gupta, NH3 gas sensing properties of nanocrystalline ZnO based thick films, Anal. Chim. Acta 568 (2006) pp. 41-46.
  110. Huixiang Tang, Mi Yan, Hui Zhang, Shenzhong Li, Xingfa Ma, Mang Wang, Deren Yang, A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature, Sens. Actuators B 114 (2006) pp. 910–915.
  111. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor, Sens. Actuators B 115 (2006) pp. 128–133.
  112. Zhi-Peng Sun, Lang Liu, Li Zhang, Dian-Zeng Jia, Rapid synthesis of ZnO nanorods by one-step, room-temperature, solid-state reaction and their gas-sensing properties, Nanotechnol 17 (2006) pp. 2266–2270.
  113. M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, ZnO transparent thin films for gas sensor applications, Thin Solid Films 515 (2006) pp. 551–554.
  114. Sergiu T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor, Sens. Actuators B 107 (2005) pp. 379–386.
  115. T. H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications, Appl. Phys. A 80 (2005) pp. 1451–1454.
  116. P. P. Sahay, Zinc oxide thin film gas sensor for detection of acetone, J. Mater. Sci. 4 (2005) pp. 4383 – 4385.
  117. Feng-Gang Lin, Yuji Takao, Y. Shimizu, M. Egashira, Zinc oxide varistor gas sensor, I effect of Bi2O3 content on the H2-sensing properties, J. American Cer. Soc. 07 (2005) pp. 2301-2306.
  118. M. S. Wagh, L. A. Patil, Tanay Seth, D. P. Amalnerkar, Surface cupricated SnO2–ZnO thick films as a H2S gas sensor, Mater. Chem. Phys. 84 (2004) pp. 228–233.
  119. X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, J. G. Zhao, ZnO nanoparticulate thin film: preparation, characterization and gas sensing property, Sens. Actuators B 102 (2004) pp. 248-252.
  120. F. Chaabouni, M. Abaab, B. Rezig, Metrological characteristics of ZnO oxygen sensor at room temperature, Sens. Actuators B 100 (2004) pp. 200-204.
  121. Y. Min, H. L. Yuller, S. Palzer, J. Wollenstein, H. Bottner, Gas response of relatively sputtered ZnO films on Si-based micro-array, Sens. Actuators B 93 (2003) pp. 435-441.
  122. A. A. Tomchenko, G. P. Harmer, B. T. Marquis, J. W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustible gases, Sens. Actuators B 93 (2003) pp. 126-134.
  123. D. Gruber, F. Kraus, J. Mu ̈ller, A novel gas sensor design based on CH4 / H2 / H2O plasma etched ZnO thin films, Sens. Actuators B 92 (2003) pp. 81–89.
  124. H. W. Ruy, B. S. Park, S. A. Akbar, W. S. Lee, K. J. Hong, Y. J. Seo, D. C. Shin, J. S. Park, G. P. Choi, ZnO sol-gel derived porous film for CO gas sensing, Sens. Actuators B 96 (2003) pp. 717-722.
  125. M. A. Ponce, C. M. Aldao, M. S. Castro, Influence of particle size on the conductance of SnO2 thick films, J. Euro. Cera. Soc. (2003) pp. 2105-2111.
  126. Won Jae Moon, Ji Haeng Yu, Gyeong Man Choi, The CO and H2 gas selectivity of CuO doped SnO2-ZnO composite gas sensor, Sens. Actuators B 87 (2002) pp. 464-470.
  127. Jeong Duk Choi, Gyeong Man Choi, Electrical and CO gas sensing properties of layered ZnO-CuO sensors Sens. Actuators B 69 (2000) pp. 120-126.
  128. G. Zhang, M. Liu, Effect of particle and dopant on properties of SnO2 based gas sensors, Sens. Actuators B 69 (2000) pp. 144–152.
  129. A. P. Chatterjee, P. Mitra, A. K. Mukhopadhyay, Chemically deposited zinc oxide thin film gas sensor, J. Mater. Sci. 34 (1999) pp. 4225 – 4231.
  130. F. Paraguay D, M. Miki Yoshida, Doping effects on the response of thin film ZnO gas sensor to ethanol vapour, Superficies Y Vacio 9 (1999) pp. 245-247.
  131. N. Jaydev Dayan, S. R. Sainkar, A. A. Belhekar, R. N. Karekar, R. C. Aiyer, On the highly selective ZnO-Al2O3 based thick-film hydrogen gas sensors, J. Material Science Letters 16 (1997) pp. 1952-1954.
  132. Feng-Cang Lin, Yuji Takao, Yasuhiro Shimizu, Makoto Egashira, Hydrogen-sensing mechanism of zinc oxide varistor gas sensors, Sens. Actuators B 24-25 (1995) pp. 843-850.
  133. V. V. Malyshev, A. A. Vasiliev, A. V. Eryshkin, E. A. Koltypin, Y. I. Shubin, A. I. Buturlin, V. A. Zaikin, G. B. Chakhunashvili, Gas sensitivity of SnO2 and Zno thin film resistive sensors to hydrocarbon, carbon monoxide and hydrogen, Sens. Actuators B 10 (1992) pp. 11-14.
  134. G. Sberveglieri, S. Groppelli, P. Nelli, A. Camanzi, Bismuth doped tin oxide thin films gas sensors, Sens. Actuators B 3 (3) (1991) pp. 183-189.
  135. T. Minami, H. Nanto, S. Shooji, S. Takata, The stability of zinc oxide transparent electrodes fabricated by RF magnetron sputtering, Thin solid films 111 (1984) pp. 167-174.
  136. Jung Shiun Jiang, Jau En Liang, Han Liou Yi, Shu Hua Chen, Chi Chung Hua, Performances of screen-printing silver thick films: Rheology, morphology, mechanical and electronic properties, Mater. Chem. Phys. 176 (2016) pp. 96–103.
  137. Rudez R., Pavlic J., Bernik S., Preparation and influence of highly concentrated screen-printing inks on the development and characteristics of thick-film varistors, J. Europ. Cera. Soc. 35 (2015) pp. 3013–3023.
  138. Sun Jin Kim, Ju Hyung We, Jin Sang Kim, Gyung Soo Kim, ByungJin Cho, Thermoelectric properties of P-type Sb2Te3 thick film processed by a screen-printing technique and a subsequent annealing process, J. Alloys and Compounds 582 (2014) pp. 177–180.
  139. Garde Arun S., Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique, J. Alloys and Compounds 617 (2014) pp. 367–373.
  140. Mario Kohl, Georg Veltl, Matthias Busse, Printed sensors produced via thick-film technology for the use in monitoring applications, Procedia Technology 15 (2014) pp. 107-113.
  141. Choi J. Y., Oh T. S., CO sensitivity of La2O3-doped SnO2 thick film gas sensor, Thin Solid Films 547 (2013) pp. 230–234.
  142. Beeby S. P., Printed thick-film mechanical microsystems (MEMS), Materials Science and Applications in Sensors, Electronics and Photonics, A volume in Wood head Publishing Series in Electronic and Optical Materials (2012) pp. 259–277.
  143. Honeychurch K. C., Printed thick-film biosensors, Materials Science and Applications in Sensors, Electronics and Photonics, A volume in Woodhead Publishing Series in Electronic and Optical Materials (2012) pp. 366–409.
  144. Prudenziati M., Hormadaly J., Technologies for printed films, Materials Science and Applications in Sensors, Electronics and Photonics, A volume in Wood head Publishing Series in Electronic and Optical Materials (2012) pp. 3–29.
  145. Changlai Yuan, Xinyu Liu, Meifang Liang, Changrong Zhou, Hua Wang, Electrical properties of Sr–Bi–Mn–Fe–O thick-film NTC thermistors prepared by screen printing, Sens. Actuators A 167 (2011) pp. 291–296.
  146. Viricelle J. P., Riviere B., Pijolat C., Optimization of SnO2 screen-printing inks for gas sensor applications, J. Europ. Cera. Soc. 25 (2005) pp. 2137–2140.
  147. Y. B. Patil, Studies on Effect of Pre to Post Transition Metal Oxide Additives on Gas Sensing Performance of Nanostructured Bi2O3, Ph. D. Thesis, North Maharashtra University, Jalgaon, (2018).
Back

Disclaimer: All papers published in IJRST will be indexed on Google Search Engine as per their policy.

We are one of the best in the field of watches and we take care of the needs of our customers and produce replica watches of very good quality as per their demands.