Vineet Sehrawat
Amity School of Engineering and Technology Amity University, Noida, Uttar Pradesh
Download PDFDifferent writing styles are remarkable, making it trying to distinguish characters that were composed manually. Transcribed character acknowledgment has turned into the subject of investigation in the most recent couple of a long time through an examination of brain organizations. Dialects composed from left to right, like Hindi, are perused from beginning to end plan. To perceive these kinds of composition, we present a Deep Learning-based manually written Hindi person acknowledgment framework using profound learning procedures like Convolutional Neural Networks (CNN) with Optimizer Adaptive Moment Estimation (Adam) and Deep Neural Networks (DNN) in this paper. The proposed framework was prepared on examples from numerous information base pictures and afterward assessed on images from a client characterized informational index, resulting in very high precision rates.
Keywords: Deep Neural Networks; DNN; Convolutional Neural Networks; CNN
Disclaimer: Indexing of published papers is subject to the evaluation and acceptance criteria of the respective indexing agencies. While we strive to maintain high academic and editorial standards, International Journal of Research in Science and Technology does not guarantee the indexing of any published paper. Acceptance and inclusion in indexing databases are determined by the quality, originality, and relevance of the paper, and are at the sole discretion of the indexing bodies.