The Effect of Bacteria on Dye
Walaa Shakir Mahmood
Biotechnology Department, College of Science, Baghdad University, Iraq
19-30
Vol: 12, Issue: 1, 2022
Receiving Date:
2021-12-10
Acceptance Date:
2022-01-22
Publication Date:
2022-03-20
Download PDF
http://doi.org/10.37648/ijrst.v12i01.003
Abstract
Microbiological and parasitological contamination of vegetables, water and soil in rural communities of a municipality was assessed. Samples were analyzed. Physical and chemical analyses were done.
Background: Textile Industries are the major sector for social and economic perspective that discharge huge number of dye stuff containing recalcitrant compounds, pigments and dye etc. into the water.
Keywords:
bacteria; dye; microbiology, parasitology
References
- Ezeador, C.O., Ejikeugwu, P.C., Ushie, S.N. and Agbakoba, N.R. Isolation, Identification And Prevalence Of Pseudomonas Aeruginosa Isolates From Clinical And Environmental Sources In Onitsha Metropolis, Anambra State EJMED, European Journal of Medical and Health SciencesVol. 2, No. 2, 2020
- Chen, B.Y., W.M. Chen, F.L. Wu, P.K. Chen and C.Y. Yen, 2008. Revealing azo-dye decolorization of indigenous Aeromonas hydrophila from fountain spring in Northeast Taiwan. J. Chin. Inst. Chem. Eng., 39: 495-501
- Alalewi,A and Jiang,C.2012. Bacterial Influence on Textile Wastewater Decolorization Journal of Environmental Protection Vol. 3 No. 8A, 13 pages
- Mahbub, K.R., J. Ferdousi and M.N. Anwar, 2011. Demonstration of decolorization of various dyes by some bacterial isolates recovered from textile effluents. Bangladesh J. Sci. Ind. Res., 46: 323-328.
- Swamy, J. and J.A. Ramsay, 1999. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb. Technol., 24: 130-137. CrossRef | Direct Link
- Moosvi, S.; Keharia, H.; Madamwar, D. (2005). Decolorization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J. Microbiol. Biotechnol., 21: 667–672
- Asgher, M.; Shah, S.A.H.; Ali, M.; Legge, R.L. (2006). Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J. Microbiol. Biotechnol., 22: 89–93.
- Dave SR, Dave RH (2009). Isolation and characterization of Bacillus thuringiensis for acid red 119 dye decolorization. Bioresource Technology 100:249-253
- Saraswathi, K. and S. Balakumar, 2009. Biodecolourization of azodye (pigmented red 208) using Bacillus firmus and Bacillus laterosporus. J. Biosci. Technol., 1: 1-7.
- Khaled, A., A. El-Nemr, A. El-Silkaily and O. Abdelwahab, 2009. Removal of direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. J. Hazard. Mater., 165: 100-110.
- Dos Santos, A.B., F.J. Cervantes and J.B. van Lier, 2007. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol., 98: 2369-2385.
- Noor R, Murata M, Nagamitsu H, Klein G, Raina S, Yamada M (2009b). Dissection of σE dependent cell lysis in Escherichia coli: roles of RpoE regulators RseA, RseB and periplasmic folding catalyst Ppid. Genes to Cells 14:885-899.
- Noor R, Islam Z, Munshi SK, Rahman F (2013). Influence of temperature on Escherichia coli growth in different culture media. Journal of Pure and Applied Microbiology 7(2):899-904.
- Munna MS, Nur IT, Rahman T, Noor R (2013). Influence of exogenous oxidative stress on Escherichia coli cell growth, viability and morphology. American Journal of BioScience 1(4):59-62.
- Munna MS, Tamanna S, Afrin, MR, Sharif GA, Mazumder, C, Kana, KS, Urmi NJ, Uddin, MA, Rahman T, Noor R (2014). Influence of aeration speed on bacterial colony forming unit (CFU) formation capacity. American Journal of Microbiological Research 2(1):47-51.
- Cheesbrough M (2000). District laboratory practice intropical countries. Press syndicate of the University of Cambridge, London.2nd edition, pp. 64-70.
- Thavasi R, Sharma S, Jayalakshmi S (2011). Evaluation of screening method, for the isolation of Biosurfactants producing marine Bacteria. Petroleum and Environmental Biotechnology. Doi:10:74-63
- Youssef HN, Dancan FED, Nagles DP, Savage KN, Knapp RM, Manerney RM (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiology Methods 50:139-347.
- Tabatabaee AT, Mazaheri M, Noohi AA, Sawadian VA (2005). Isolation of biosurfactant producing Bacteria from oil reservoirs. Iranian Journal of Environmental Health Science and Engineering 2:6-12.
- Techaoei S, Lumyoung S, Parathumpai S, Sandarwarn D, Leclapornoisid P (2011). Screening, Characterization and stability of biosurfactants produced by pseudomonas aeruginosa SCMU 106 isolated from soil in northern Thailand. Asia Journal of Biological Science 4(4):34-351
- Abubakar, U., Ibrahim, U. B., Fardami, A.Y.,Kawo, A. H. and Dankaka, S. M. Biosurfactant production potential of bacillus obtained from dye effluent African Journal of Microbiology Research Vol. 14(2), pp. 71-76, February, 2020
- Olayinka,A.T., Olayinka,B.O and Onile,B.A. Antibioticsusceptibility and plasmid pattern of Pseudomonasaeruginosa from the surgical unit of a university teaching hospital in north central Nigeria. International Journal of Medicine and Medical Sciences, March 2009; 1(3):79–83.
- Yusuf,I., Arzai,A.H., Haruna,M., Sharif,A.A. and Getso,M.I.. Detection of multi drug resistant bacteria in major hospitals in Kano. Brazilian Journal of Microbiology, 2014; 45 (3):791–798.
- Akingbade,O., Balogun,S., Ojo,D., Afolabi,R., Motayo,B., Okerentugba.,P. Plasmid Profile Analysis of Multidrug Resistant Pseudomonasaeruginosa Isolated from Wound Infections in SouthWest , Nigeria. World Appl Sci J. 2012;20(6):766–775.
- Nworie,O., Nnachi,A.U., Ukaegbu,C.O., Alo,M.N., Ekuma,U.O. and Ogueji,E.O. Antibiotic susceptibility and plasmid profile of Staphylococcusaureus ,Pseudomonasaeruginosa and Escherichiacoli isolated from wound patients in Abakaliki
- metropolis, Ebonyi state. Am J Biosci Bioeng. 2013;1(6):75–82.
- Sharnaik, S. and P. Kaneker, 1995. Bioremediation of colour of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. J. Applied Bacteriol., 79: 459-469.
- Mihir, L.S., R.K. Mahbubar and I. Farida, 2006. Bacteria associated with textile dyeing industrial effluents and their depolarization potentiality. Bangladesh J. Microbiol., 23: 52-54.
- Sukumar, M., A. Sivasamy and G. Swaminathan, 2007. Decolorization of textile dye effluent by genetically improved bacterial strains. Applied Biochem. Biotechnol., 136: 53-62.
- Uddin,M,S., Zhou,J,Ou,Y.,Guo,J., Wang,P., Zhao,L,h.2007. Biodecolorization of Azo Dye Acid Red B under High Salinity Condition Bulletin of Environmental Contamination and Toxicology volume 79, pages 440–444
- Oren, A., P. Gurevich, M. Azachi and Y. Henis, 1992. Microbial degradation of pollutants at high salt concentrations. Biodegradation, 3: 387-398.
- Ventosa, A., J.J. Nieto and A. Oren, 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev., 62: 504-544.
- Suzuki, Y., T. Yoda, A. Ruhul and W. Sugiura, 2001. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J. Biol. Chem., 276: 9059-9065
- Knapp, J.S., Newby, P.S., 1995. The microbiological decolorization of an industrial effluent containing a diazo-linked chromophore. Water Res. 29, 1807 -/1809.
- Ben Mansour, H., Corroler, D., Barillier, D., Ghedira, K., Chekir, L., and Mosrati, R. (2007). Evaluation of genotoxicity and prooxidanteffect of the azo dyes: acids yellow 17, violet 7 andorange 52, and of their degradation products by Pseudomonasputida mt-2. Food Chem. Toxicol. 45, 1670.
- Ben Mansour, H., Bariller, D., Correler, D., Ghedira, K., Chekir, L., and Mosrati, R. (2009a). In vitro mutagenicity of acid violet7 and its degradation products by Pseudomonas putida mt-2: correlation with chemical structure. Environ. Toxicol. Pharmacol. 27, 231.
- Ben Mansour, H., Corroler, D., Bariller, D., Ghedira, K., Chekir, L., and Mosrati, R. (2009b). Influence of the chemical structureon the biodegradability of acids yellow 17, violet 7 and orange52 by Pseudomonas putida. Ann. Microbiol. 59, 1.
- Ben Mansour, H., Mosrati, R., Corroler, D., Ghedira, K., Bariller, D., and Chekir, L. (2009c). Mutagenicity and genotoxicity ofacid yellow 17 and its biodegradation products. Drug Chem. Toxicol. 32, 222.
- Ben Mansour, H., Mosrati, R., Corroler, D., Ghedira, K., Bariller, D., and Chekir, L. (2009d). Genotoxic and antibutyrylcholinesterasic activities of acid violet 7 and its biodegradation products. Drug Chem. Toxicol. 32, 230.
- Ben Mansour, H., Mosrati, R., Corroler, D., Ghedira, K., Bariller, D., and Chekir, L. (2009e). Mutagenicity and genotoxicity of acid yellow 17 and its biodegradation products. Drug. Chem. Toxicol. 32, 222
- Karthik, L., Kumar, G. and Rao, K.V.B. (2010). Comparison of methods and screening of biosurfactant producing marine actinobacteria isolated from Nicobar marine sediment. The IIOAB Journal, 9(2): 34 – 38.
- Ferraz, C., De Araujo, A. A. and Pastore, G. M. (2002). The influence of vegetable oils on biosurfactant production by Serratia marcescens. Applied Biochemistry and Biotechnology, 98(1): 841 – 847
- Haddad, N. I. A., Wang, J. and Mu, B. (2009). Identification of a biosurfactant producing strain: Bacillus subtilis HOB2. Protein and Peptide Letters. 16: 7 - 13.
- Jazeh, G., Forghani, F. and Oh, D-H. (2012). Biosurfactant production by Bacillus sp. isolated from petroleum contaminated soils of Sirri Island. American Journal of Applied Sciences, 9(1): 1 – 6.
Back