Details

STUDY ON BIOCHEMICAL NATURE OF ORGANIC COMPOUNDS WITH SPECIAL REFERENCE TO ORIGIN OF BIOLOGICAL MOLECULES LIPIDS, WAXES, PROTEIN OR THERE IMPORTANCE IN BIOLOGICAL ORIGIN

Sandeep Kumar

PhD Scholar DEPARTMENT OF LIFE SCIENCS MONAD UNIVERSITY, Hapur (UP)

Dr. Akhilesh Kumar

Assistant Professor Govt. PG College Narnaul (HR)

178-190

Vol: 6, Issue: 2, 2016

Receiving Date: 2016-03-08 Acceptance Date:

2016-04-26

Publication Date:

2016-05-31

Download PDF

Abstract

Transfersome is a term registered as a trademark by the German company IDEA AG, used to refer to its proprietary drug delivery technology. The name means “carrying body”, and is derived from the Latin word 'transferre', meaning „to carry across‟, and the Greek word „soma‟, for a „body‟. A Transfersome carrier is an artificial vesicle designed to be like acell vesicle or a cell engaged in exocytosis, and thus suitable for controlled and, potentially targeted, drug delivery. The term Transfersome and the underlying concept were introduced in 1991 by Gregor Cevc. Numerous groups have since been working with similar carriers, frequently under different names (elastic vesicle, flexible vesicle, Ethosome, etc.) to describe them. In a broader sense, a Transfersome is a highly adaptable and stress-responsive, complex aggregate. Its preferred form is an ultradeformable vesicle possessing an aqueous core surrounded by the complex lipid bilayer. Interdependency of local composition and shape of the bilayer makes the vesicle both self-regulating and self-optimizing. This enables the Transfersome to cross various transport barriers efficiently, and then act as a Drug carrier for non-invasive targeted drug delivery and sustained release of therapeutic agents. The carrier aggregate is composed of at least one amphiphat (such as phosphatudylcholine), which in aqueous solvents self-assenbles into lipid bilayer that closes nto a simple lipid vesicle. Bby addition of at least one bilayer softening component (such as a biocompatible surfactant or an amphiphile drug) lipid bilayer flexibility and permeability are greatly increased. The resulting, flexibility and permeability optimised, Transfersome vesicle can therefore adapt its shape to ambient easily and rapidly, by adjusting local concentration of each bilayer component to the local stress experienced by the bilayer. In its basic organization broadly similar to a liposome), the Transfersome thus differs from such more conventional vesicle primarily by its "softer", more deformable, and better adjustable artificial membrane.

Keywords: component ; flexibility and permeability ;conventional

References

  1. ^ Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri (2002). 'Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction'. J. Am. Chem. Soc 124 (31): 9074–82. doi:10.1021/ja0257319.PMID 12149011..
  2. ^ a b Crawford, R. L. (1981). Lignin biodegradation and transformation. New York: John Wiley and Sons. ISBN 0-471-05743-6.
  3. ^ Updegraff DM (1969). 'Semimicro determination of cellulose in biological materials'.Analytical Biochemistry 32 (3): 420–424. doi:10.1016/S0003-2697(69)80009- 6.PMID 5361396.
  4. ^ Romeo, Tony (2008). Bacterial biofilms. Berlin: Springer. pp. 258–263. ISBN 978-3-540- 75418-3.
  5. ^ a b c Klemm, Dieter; Heublein, Brigitte; Fink, Hans-Peter; Bohn, Andreas (6 September 2005). 'Cellulose: Fascinating Biopolymer and Sustainable Raw Material'.ChemInform 36 (36). doi:10.1002/chin.200536238.
  6. ^ Cellulose. (2008). In Encyclopædia Britannica. Retrieved January 11, 2008, from Encyclopædia Britannica Online.
  7. ^ Chemical Composition of Wood
  8. ^ Multi-criteria evaluation of lignocellulosic niche crops for use in biorefinery processes
  9. ^ Slavin, JL; Brauer, PM; Marlett, JA (1981). 'Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects.'. The Journal of Nutrition 111 (2): 287–97.PMID 6257867.
  10. ^ Joshi, S; Agte, V (1995). 'Digestibility of dietary fiber components in vegetarian men.'.Plant foods for human nutrition (Dordrecht, Netherlands) 48 (1): 39– 44.doi:10.1007/BF01089198. PMID 8719737.
  11. ^ A. Payen (1838) 'Mémoire sur la composition du tissu propre des plantes et du ligneux' (Memoir on the composition of the tissue of plants and of woody [material]),Comptes rendus, vol. 7, pages 1052-1056. Payen added appendices to this. ^ Young, Raymond (1986). Cellulose structure modification and hydrolysis. New York: Wiley. ISBN 0-471-82761-4.
  12. ^ Kobayashi, Shiro; Kashiwa, Keita; Shimada, Junji; Kawasaki, Tatsuya; Shoda, Shin-ichiro (1992). 'Enzymatic polymerization: The first in vitro synthesis of cellulose via nonbiosynthetic path catalyzed by cellulase'. Makromolekulare Chemie. Macromolecular Symposia. 54-55 (1): 509–518. doi:10.1002/masy.19920540138.
  13. ^ Weiner, Myra L.; Lois A. Kotkoskie (2000). Excipient Toxicity and Safety. New York ; Dekker. p. 210. ISBN 0-8247-8210-0.
  14. ^ Peng, B. L., Dhar, N., Liu, H. L. and Tam, K. C. (2011). 'Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective.'. The Canadian Journal of Chemical Engineering 89 (5): 1191–1206.
  15. ^ Lawrence Pranger and Rina Tannenbaum 'Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay' Macromolecules 41 (2008) 8682. http://dx.doi.org/10.1021/ma8020213
  16. ^ Holt-Gimenez, Eric 2007. Biofuels: Myths of the Agrofuels Transition. Backgrounder. Institute for Food and Development Policy, Oakland, CA. 13:2
  17. ^ Charles A. Bishop, ed. (2007). Vacuum deposition onto webs, films, and foils, Volume 0, Issue 8155. p. 165. ISBN 0-8155-1535-9.
  18. ^ Young, Raymond (1986). Cellulose structure modification and hydrolysis. New York: Wiley. ISBN 0-471-82761-4.
  19. ^ Kobayashi, Shiro; Kashiwa, Keita; Shimada, Junji; Kawasaki, Tatsuya; Shoda, Shin-ichiro (1992). 'Enzymatic polymerization: The first in vitro synthesis of cellulose via nonbiosynthetic path catalyzed by cellulase'. Makromolekulare Chemie. Macromolecular Symposia. 54-55 (1): 509–518. doi:10.1002/masy.19920540138.
  20. ^ Weiner, Myra L.; Lois A. Kotkoskie (2000). Excipient Toxicity and Safety. New York ;Dekker. p. 210. ISBN 0-8247-8210-0.
  21. ^ Peng, B. L., Dhar, N., Liu, H. L. and Tam, K. C. (2011). 'Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective.'. The Canadian Journal of Chemical Engineering 89 (5): 1191–1206.
  22. ^ Lawrence Pranger and Rina Tannenbaum 'Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay' Macromolecules 41 (2008) 8682. http://dx.doi.org/10.1021/ma8020213
  23. ^ Holt-Gimenez, Eric 2007. Biofuels: Myths of the Agrofuels Transition. Backgrounder. Institute for Food and Development Policy, Oakland, CA.13:2
  24. ^ Charles A. Bishop, ed. (2007). Vacuum deposition onto webs, films, and foils, Volume 0, Issue 8155. p. 165. ISBN 0-8155-1535-9.
  25. ^ Structure and morphology of cellulose by Serge Pérez and William Mackie, CERMAVCNRS, 2001. Chapter IV.
  26. ^ Stenius, Per (2000). '1'. Forest Products Chemistry. Papermaking Science and Technology 3. Finland: Fapet OY. p. 35. ISBN 952-5216-03-9.
  27. ^ Kimura, S; Laosinchai, W; Itoh, T; Cui, X; Linder, CR; Brown Jr, RM (1999).'Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis'. The Plant cell 11 (11): 2075– 86.doi:10.2307/3871010. JSTOR 3871010. PMC 144118. PMID 10559435.
  28. ^ Taylor, N. G. (2003). 'Interactions among three distinct CesA proteins essential for cellulose synthesis'. Proceedings of the National Academy of Sciences 100 (3): 1450.doi:10.1073/pnas.0337628100.
  29. ^ Peng, L; Kawagoe, Y; Hogan, P; Delmer, D (2002). 'Sitosterol-beta-glucoside as primer for cellulose synthesis in plants'. Science 295 (5552): 147– 50.doi:10.1126/science.1064281. PMID 11778054.
  30. ^ Endean, The Test of the Ascidian, Phallusia mammillata, Quarterly Journal of Microscopical Science, Vol. 102, part 1, pp. 107-117, 1961.
  31. ^ David G. Barkalow, Roy L. Whistler, 'Cellulose', in AccessScience, McGrawHill,doi:10.1036/1097-8542.118200. Retrieved 11 January 2008.
  32. ^ Tokuda, G; Watanabe, H (22 June 2007). 'Hidden cellulases in termites: revision ofan old hypothesis'. Biology Letters 3 (3): 336– 339. doi:10.1098/rsbl.2007.0073.PMC 2464699. PMID 17374589
  33. ^ Brás, Natércia; N. M. F. S. A. Cerqueira, P. A. Fernandes, M. J. Ramos (2008). 'Carbohydrate Binding Modules from family 11: Understanding the binding mode of polysaccharides'. International Journal of Quantum Chemistry 108 (11): 2030– 2040.doi:10.1002/qua.21755.
Back

Disclaimer: All papers published in IJRST will be indexed on Google Search Engine as per their policy.

We are one of the best in the field of watches and we take care of the needs of our customers and produce replica watches of very good quality as per their demands.