DATA ANALYSIS ON BOUNDARY VALUE PROBLEM (SPHERICAL BODY)
Rajurkar Ravindra Kawadu
Research Scholar, Dept. of Mathematics Cmj University, Shillong, Meghalaya
16-23
Vol: 3, Issue: 2, 2013
Receiving Date:
Acceptance Date:
Publication Date:
Download PDF
Abstract
In mathematics, in the field of differential equations, a boundary value problem is a differential
equation together with a set of additional restraints, called the boundary conditions. A solution to
a boundary value problem is a solution to the differential equation which also satisfies the
boundary conditions.
Keywords:
boundary value problem; mathematics; equations
References
- Bell, Steven R. (1992), The Cauchy transform, potential theory, and conformal mapping, Studies in Advanced Mathematics, CRC Press, ISBN 0-8493-8270-X
- Warner, Frank W. (1983), Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, 94, Springer, ISBN 0387908943
- Griffiths, Phillip; Harris, Joseph (1994), Principles of Algebraic Geometry, Wiley Interscience, ISBN 0471050598
- Courant, R. (1950), Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience
- Schiffer, M.; Hawley, N. S. (1962), 'Connections and conformal mapping', Acta Math. 107: 175–274
- Greene, Robert E.; Krantz, Steven G. (2006), Function theory of one complex variable, Graduate Studies in Mathematics, 40 (3rd ed.), American Mathematical Society, ISBN 0-8218- 3962-4
- Taylor, Michael E. (2011), Partial differential equations I. Basic theory, Applied Mathematical Sciences, 115 (2nd ed.), Springer, ISBN 978-1-4419-70
- A. Yanushauskas (2001), 'Dirichlet problem', in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- S. G. Krantz, the Dirichlet Problem. §7.3.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 93, 1999. ISBN 0-8176-4011-8.
- S. Axler, P. Gorkin, K. Voss, The Dirichlet problem on quadratic surfaces Mathematics of Computation 73 (2004), 637-651.
- Gilbarg, David; Trudinger, Neil S. (2001), Elliptic partial differential equations ofsecond order (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-41160-4
Back