Besides the generating polynomial, there are many other polynomials that can be used to generate a cyclic
code. One such another vary specific polynomial called an idempotent generator, can also be used to
generate a cyclic code. As the ring Rn is semi-simple therefore each ideal in Rn contains a unique
idempotent which also generates the ideal. This idempotent is called the generating idempotent of the
corresponding cyclic code. The idempotent generating the minimal ideal (minimal code) in Rn is called a
Primitive idempotent
Download PDF
References
- Arora, S.K and M. Pruthi, Minimal cyclic codes of length 2pn , Finite Fields and their Applications 5, 177-187 (1999).
- Arora ,S.K., Batra,S., Cohen,S.D.Primitive idempotents of a Cyclic Group Algebra,II , Southeast Asian Bulletin of Mathematics, (2005) 29,197-208.
- Apostol, Tom M.Introduction to Analytic Number Theory, Springer-Verlag, NewYork, 1976. 4.Bakshi,G.K.;Raka,M. Minimal cyclic codes of length pnq,Finite Fields and Their appl.9 no.4(2003)432-448
- Bartow ,J. E.A reduced upper bound on the error ability of codes, IEEE Trans. Infor. Theory 9 (1963) 46.
- A upper bound on the error ability of codes, IEEE Trans. Infor. Theory 9 (1963) 290.
- Bassalygo ,L. A.New upper bounds for error correcting codes, Problem of Information Transmission 1(4), 1965, 32-35.
- Batra, S. and Arora ,S.K.Minimal quadratic residue cyclic codes of length pn (p odd prime),The Korean Journal of Computational and Applied Mathematics 8(3), 531-547 (2001)
- Batra S., Arora, S.K.Minimal quadratic residue cyclic codes of length 2n n>1),J.Appl.Math.& Computing Vol. 18 (2005),No. 1-2,25-43.
- Berger ,Y., Be’ ery ,Y.The twisted squaring construction, trellis complexity, and generalized weight of BCH codes, IEEE Trans. Infor. Theory 42 (1996), no.6, part 1, 1817 -1827.
- Berlekamp ,E.R.Algebraic Coding Theory, McGraw Hill, New York, 1968.
- Berlekamp, E.R. Justesen , Some long cyclic linear binary codes are not so bad. IEEE Trans. Infor. Theory, 20 (1974) 351-356.
- Berlekamp,E.R., Mac.,F.J., Gleason’s Theorem on self duals codes, IEEE Trans. Infor. Theory,19 Sloane,N.J.A (1973) 409-414.
- Berlekamp,E.R; Sloane,N.J.A., Restrictions on weight distribution of Reed Muller codes, Infor.Control,14 (1969) 442-456.
- Berlekamp, E.R.,Rumsey,H. On the solutions of algebraic equations over finite fields, Solomon,G. Infor. Control,10 (1967) 553-564.
- Berman,S.D. On theory of group codes , Cybernatics 3(1) (1967) 25-31.
- Berman,S.D. Semi simple Cyclic and Abelian codes II, Cybernatics 3(3) (1967) 17-23.
- Bhargawa ,V.K., Ngugen C.Weight distribution of some cyclic codes of MacWilliams, Second International Conference on Information Sciences and System(Univ.Patras, Patras, 1979), VolI p.p. 117-122, Reidal Dordrecht,1980.
- Bhargava,V.K.,Stien,M. (,, )configurations and self dual codes, Infor. control,28 (1975) 352-355.
- Blare, Ian F. Distance properties of the Group code ofr Gaussian Channel, SIAM J. Appl. Math. 23 (1972), 312-324.
- Blare ,Ian F. Permutation codes for discrete channel, IEEE trans. Infor. Theory. 20 (1974) 138-140.
- Blake I.F., Mullin, R.C. The Mathematical Theory of Coding, Acdemic press, New York,1975.
Back