RECOGNIZING THE TERRORISTIC BEHAVIOR ON THE WEB USING DATA MINING TECHNIQUES
Manoj Bala, Dr. D.B. Ojha
An innovative knowledge-based methodology for terrorist detection by using Web traffic content as the
audit information is presented. The proposed methodology learns the typical behavior (‘profile’) of
terrorists by applying a data mining algorithm to the textual content of terror-related Web sites. The
resulting profile is used by the system to perform real-time detection of users suspected of being engaged
in terrorist activities. The Receiver-Operator Characteristic (ROC) analysis shows that this methodology
can outperform a command based intrusion detection system.replicas patek philippe
Download PDF
References
- Balasubramaniyan, J.S., Garcia-Fernandez, J.O., Isacoff, D., Spafford, E., Zamboni, D.(1998) An architecture for intrusion detection using autonomous agents, Proceedings 14th Annual Computer Security Applications Conference, IEEE Comput. Soc, Los Alamitos, CA, USA,xiii+365, pp. 13-24.
- Boger, Z., Kuflik, T., Shoval, P., Shapira, B.(2001) Automatic keyword identification by artificial neural networks compared to manual identification by users of filtering systems, Information Processing and Management, 37:187-198.
- Corbin, J. (2002) Al-Qaeda: In Search of the Terror Network that Threatens the World, Thunder’s Mouth Press / Nation Books, New York.
- Debar, H., Dacier, H., Dacier, M., Wespi, A. (1999) Towards a taxonomy of intrusiondetectionsystems, Computer Networks, 31, pp. 805–822.
- Han, J., Kamber, M. (2001) Data Mining: Concepts and Techniques, Morgan Kaufmann. Ingram,
- M. (2001) Internet privacy threatened following terrorist attacks on US, URL: http://www.wsws.org/articles/2001/sep2001/isps24.shtml
- Jain, A.K., Murty, M.N., Flynn, P.J. (1999) Data Clustering: A Review, ACM ComputingSurveys, 31, 3:264-323.
- Karypis, G. (2002) CLUTO - A Clustering Toolkit, Release 2.0, University of Minnesota, URL:http://www.users.cs.umn.edu/~karypis/cluto/download.html.
- Kelley, J. (2002) Terror Groups behind Web encryption, USA Today, URL: http://www.apfn.org/apfn/WTC_why.htm
- Last, M., Shapira, B., Elovici, Y. Zaafrany, O., Kandel, A. (2001) Content-Based Methodology for Anomaly Detection on the Web, submitted to AWIC'03, Atlantic Web Intelligence Conference, Madrid, Spain.
- Lemos, R. (2002) what are the real risks of cyber terrorism? ZDNet, URL: http://zdnet.com.com/2100-1105-955293.html.
- Pierrea, S., Kacanb, C., Probstc, W. (2000) An agent-based approach for integrating user profileinto a knowledge management process, Knowledge-Based Systems, 13:307-314.
- Provost, F., Fawcett, T. (2001). Robust Classification for Imprecise Environments. MachineLearning 42,3:203-231.
- Richards, K. (1999) Network Based Intrusion Detection: A Review of Technologies, Computers& Security, 18:671-682.
- Salton, G. (1989) Automatic Text Processing: the Transformation, Analysis, and Retrieval ofInformation by Computer, Addison-Wesley, Reading.
- Salton, G., Wong, A., Yang C.S.A. (1975) Vector Space Model for Automatic Indexing,Communications of the ACM , 18: 613-620.
- Schenker, A., Last, M., Bunke, H., Kandel, A. (2003) Clustering of Web Documents using a Graph Model, to appear in: Web Document Analysis: Challenges and Opportunities, eds: A. Antonacopoulos, J Hu. World Scientific.
- Sequeira, K., Zaki, M. (2002) ADMIT: Anomaly-based Data Mining for Intrusions, Proceedings of SIGKDD 02, pp. 386-395, ACM.
- Shapira, B., Shoval, P., Hanani, U. (1997) Stereotypes in Information Filtering Systems,Information Processing & Management, 33, 3:273-287.
- Spafford, E.H., Zamboni, D. (2000) Intrusion detection using autonomous agents, ComputerNetworks, 34:547-570.
Back