Common Fixed Point Theorems for Four Selfmaps of a Compact S−Metric Space
Upender S
Associate Professor of Mathematics, Tara Government College (Autonomous), Sangareddy - 502001, India
73-82
Vol: 11, Issue: 2, 2021
Receiving Date:
2021-05-19
Acceptance Date:
2021-06-19
Publication Date:
2021-06-27
Download PDF
http://doi.org/10.37648/ijrst.v11i02.007
Abstract
The purpose of this paper is to prove a common fixed point theorem for four selfmaps on a S–metric space and deduce a common fixed point theorem for four selfmaps on a compact S–metric space. Further we show that a common fixed point theorem for four selfmaps of a metric space prove by Brian Fisher ([5]) is a particular case of our theorem.
Keywords:
S-metric space; Compatible; Fixed point theorem.
References
- Aliouche, A., Sedghi, S., & Shobe, N. (2012). A generalization of fixed point theorems in $S$- metric spaces. MatematiÄki Vesnik, *64*(249), 258–266. http://eudml.org/doc/253803
- Dhage, B. C. (1992). Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, *84*(4), 329– 336.
- Dhage, B. C. (1999). A common fixed point principle in D- metric spaces. Bulletin of the Calcutta Mathematical Society, *91*(6), 475– 480.
- Dhage, B. C., Pathan, A. M., & Rhoades, B. E. (2000). A general existence principle for fixed point theorems in D- metric spaces. International Journal of Mathematics and Mathematical Sciences, *23*(7), 441– 448. https://doi.org/10.1155/S016117120000158 7
- Fisher, B. (1983). Common fixed points of four mappings. Bulletin of the Institute of Mathematics, Academia Sinica, *11*, 103–113.
- Gahler, S. (1963). 2-metrische Raume und iher topoloische Struktur. Mathematische Nachrichten, *26*, 115–148.
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2004). On the topology of D- metric spaces and Generalization of D- metric spaces from Metric Spaces. International Journal of Mathematics and Mathematical Sciences, *2004*(51), 2719–2740. https://doi.org/10.1155/S01611712043112 572740. https://doi.org/10.1155/S01611712043112 57
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On the concepts of balls in a Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, *2005*(1), 133– 141. https://doi.org/10.1155/IJMMS.2005.133
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On convergent sequences and fixed point theorems in D- metric spaces. International Journal of Mathematics and Mathematical Sciences, *2005*(12), 1969– 1988. https://doi.org/10.1155/IJMMS.2005.1969
- Rhoades, B. E., Ahmad, B., & Ashraf, M. (2001). Fixed point theorems for expansive mappings in D- metric spaces. Indian Journal of Pure and Applied Mathematics, *32*(10), 1513– 1518.
- Sedghi, S., Shobe, N., & Zhou, H. (2007). A common fixed point theorem in D*-metric spaces. Fixed Point Theory and Applications, *2007*, Article ID 27906. https://doi.org/10.1155/2007/27906
Back