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ABSTRACT

to be comparable in speed to the carry look-
power. In this paper, a design of 8-bit Carry ki xisting logic styles are to be

Multipliers at one end of the spectrum and fully serial

he increasing level of device integration and the growth in

rcuits, reduction of power dissipation has also come to the

fore as a primary I. While power efficiency has always been desirable in electronic
circuits, only recent s it become a limiting factor for a broad range of applications,
requiring considerati@n early on in the design process. Power dissipation limitations come in
two flavors. The first is related to cooling considerations when implementing high
performance systems. High speed circuits dissipate large amounts of energy in a short amount
of time, generating a great deal of heat as a by-product. This heat needs to be removed by the
package on which integrated circuits are mounted. Heat removal may become a limiting
factor if the package (PC board, system enclosure, heat sink) cannot adequately dissipate this
heat, or if the required thermal components are too expensive for the application. The second
failure mode of high-power circuits relates to the increasing popularity of portable electronic

devices. Laptop computers, pagers, portable video players and cellular phones all use
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batteries as a power source, which by their nature provide a limited time of operation before
they require recharging. To extend battery life, low power operation is desirable in integrated
circuits. Furthermore, successive generations of applications often require more computing
power, placing greater demands on energy storage elements within the system. Technology
improvements in the last few decades have succeeded in reducing power consumption.
Trends such as using CMOS instead of bipolar devices, and reduction in feature size of
lithographic processes have served to reduce power dissipation, although other objectives,
namely high integration and speed, were the primary goals of such improvements.

EXISTING SYSTEM

CONCEPT OF VL-ADDER
Carry Propagation in a Carry-Select Adder

carry generation blocks, a multiplexer (M

block. In CSS;, two carry-out signals Cy a

that Cin, the carry-in signal of CSS;, is 0 or

the actual carry-out S|gnal Coutj-1 Of CSS;.y,
the carry-out signal Couy;
SS. Usually, the number

(3+n) n/2 = M i 10. There are multiple crltlcal carry
propagation starts from the first bit adder of every CSS, crosses
j gat the sum generation block of the last stage.

(3.1)

where Dcary, e the delays of carry generation circuitry, MUX, and sum
generation circuitr ively; qo is the number of input bits in the first and Dseyyp IS the
setup time of CSA, h is the time taken to create the intermediate signals G(generation)
and P(propagation). The delay of a CSA heavily depends on the input vectors, e.g., the carry
propagation through the MUX chain of CSA. Let m; denote the number of bits in CSS;.
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A new VL CSA architecture called “VL-CSA” is shown in the row “VL-CSA” in
Table 1. The CSSs of VL-CSA are divided into two separate sequences: sequence | and
sequence Il. Sequence | and sequence Il include k(=7) and m(=6) CSSs, respectively. In each
sequence, the first stage CSS starts with a relatively small number of input bits, and the
number of input bits to a CSS increases with the stage number of the CSS, as in the case of a
conventional CSA. Now, we combine the two sequences of CSSs and label them from 1 to
m+k. However, the carry can propagate through the first Nc CSSs in sequence I, i.e., CSSk+1

CSSk+nc only if

dder of bit in CSSy;+; CSSksne. A long-
t delay is Ling, OCcurs only when the carry can
. For random inputs, the probability of long-

3.3)
input bits of CSS+1. When a short-latency operation is
propagation in VL-CSA is divided into two parts: one from
CSS; through CS he other one from CSSy.nc through the last stage CSSy+m. The
longest latency of all t-latency operations, denoted by Lgnor, IS
Lshore = maxifDynef, Dnax2) (3.4)
where D,,.,1 and D,,,,» are the longest delays of the first and the second parts, respectively.
We have
Dpax1 = Dsetup + 9o,i Dearry + (k+N.) Dmux + Dsum
DmaxZ = Dsetup + o, Dcarry"’ m Dmux+ Dsum (35)
Pvi-csa(1+PTiong ) < Pesa (3.6)
where Pyi.csa and P.s4 are power consumptions of the VL-CSA (at Vvi.csa) and the
conventional CSA (at Vcsa), respectively. Based on the CSA structure, the numbers of CSSs
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in the two sequences of VL-CSA, m and Kk, satisfy(Zqo,,+k-1)§+(2q0,,+m-1)% ~M=64
(3.7)

By combining (3.1)—(3.7), a 64-bit VL-CSA with 13 CSSs is designed, as shown in
the row “VL-CSA” of Table 3.1. In each sequence, the number of input bits of a CSS roughly
increases with the stage number.

Table 3.1Numbers of Input Bits of CSSs in a 64-Bit Standard CSA And VL-CSA
(and a Modified VL-CSA)

Stage

Conv. CSA
VL-CSA

Detection of Long Latency for VL-CSA

In our 64-bit VL-CSA design, the input bj
the long-latency operations. The detection lo

LONG_OP=A43; © Bs1,43, © Bs

A long-latency operation occurs = 1. The corresponding
circuit, called carry length detection circuit ig. 3.2. When an LONG
OP signal is pulled up ‘‘high,” ing signal is triggered to dig@ble the clock (Gen CLK)
switching in the following ¢ shown in Fjg. 3.3 Heg@¥signal TH ADJ is fixed at
“low.”’

GATING
D Q)

CLK— ﬁ—‘

GATING
TH_ADJ

Fig 2 CLDC Design of VL-CSA
PROPOSED SY&TEM

General Description of the Proposed Structure

The structure is based on combining the concatenation and the incrementation
schemes [13] with the Conv-CSKA structure, and hence, is denoted by CI-CSKA. It provides
us with the ability to use simpler carry skip logics. The logic replaces 2:1 multiplexers by
AOI/OAI compound gates (Fig. 3). The gates, which consist of fewer transistors, have lower
delay, area, and smaller power consumption compared with those of the 2:1 multiplexer [37].

Note that, in this structure, as the carry propagates through the skip logics, it becomes
249
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complemented. Therefore, at the output of the skip logic of even stages, the complement of
the carry is generated. The structure has a considerable lower propagation delay with a
slightly smaller area compared with those of the conventional one. Note that while the power
consumptions of the AOI (or OAI) gate are smaller than that of the multiplexer, the power
consumption of the proposed CI-CSKA is a little more than that of the conventional one.
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Fig 3 CI-CSKA Structige
This is due to the increase in the number ofilke gates, which im higher wiring
capacitance (in the noncritical paths). Now,
CI-CSKA shown in Fig. 4.1 in more detail
and Q stages. Each stage consists of an RC

output of ;he previou
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Fig. 4 Internal structure of the j th incrementation block, Kj=Y1-{ M, (1 =2 .......Q).

Stage Sizes Consideration
Similar to the Conv-CSKA structure, the proposed CI-CSKA structure may be
implemented with either FSS or VSS. Here, the stage size is the same as the RCA and
250
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incrementation blocks size. In the case of the FSS (FSS-CI-CSKA), there are Q = N/M stages
with the size of M. The optimum value of M, which may be obtained using (11), is given by

Mopt:\/ N(T 01 +Toar)

2(Tcarry +Tanp )

I WES Conventional CSEA (VESConv(CSELA) |

Srage | A, i Adyad f 5 0 g Ay

Size 5

Mo

a

Muclews Stage Size (Ad )= 4 Muclews Stage Size (A) — 5

VSS-Conv-CSKA BT VSSCI-CSKA
Stage Index 777 -
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L]

=
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Fig. 5 Sizes of the stages in the case of ndconventional 32-bit

riable latency CSKA structure is shown in Fig. 4.5 where
or the pth stage (nucleus stage). Since the nucleus stage,
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Fig 6 Structure of the proposed hybrid variable latency CSKA
Thus, the use of the fast PPA helps increasing the available slack time in the variable
latency structure. It should be mentioned that since the input bits of the PPA block are used in
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the predictor block, this block becomes parts of both SLP1 and SLP2. In the proposed hybrid
structure, the prefix network of the Brent—Kung adder [39] is used for constructing the
nucleus stage (Fig. 7).
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modified paralle stgucture at the middle stage for increasing the slack time, which
provided us with the tunity for lowering the energy consumption by reducing the supply
voltage.
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