(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

EVALUATION OF IMAGE TEXTURE PARAMETERS FOR URBAN LAND COVER CLASSIFICATION

*Miss.J.Jacinth Jennifer, *Miss.S.Vanmathy, *Miss.C.Maria Jobi Sahana, **Mrs.G.Devi.

*PG student: Department of Civil Engineering, **Assistant Professor: Department of Civil Engineering Anna University Regional Campus Tirunelveli, India

ABSTRACT

Remote sensing technology is paving its own way with remarkable advantages in various fields. Feature extraction from satellite imagery is one of the challenging tasks in image processing. As far as low resolution images were concerned, per pixel analysis and sub-pixel analysis were gaining its importance. Now with the advancements in technology, high resolution imageries are acquired easily and made used in various applications. When speaking about high resolution imageries, it is made known that an object or feature in the imagery is made up of several pixels which is contrary to the low resolution imageries. Thus, an alternative technique for feature retrieval is necessary to extract features from high resolution imagery. Spatial relationships between the pixels were taken into consideration along with its spectral characteristics. Texture is one of the spatial parameter which is of much importance. The texture of an image gives us the information about the spatial arrangement of colours or intensities and it is a function of the texture surface, its albedo, the illumination and the camera and its viewing position. There are various parameters to characterize the texture of an image. Haralick's texture parameters were found to be of much importance compared to the other texture parameters. Thus Haralick's texture parameters were considered in the study. There are about thirteen Haralick's texture parameters. In urban feature extraction, it is not necessary that all these thirteen parameters have to be imposed because certain parameters have no influence in extracting the urban features. So based on this aspect, statistical analysis was made so as to examine and quantify the influence of each Haralick's texture parameter.

Out of thirteen, six were found to be of considerable importance. Using these six textural characteristics, classification was carried out and 88% accuracy was obtained in urban feature extraction.

Keywords: texture, satellite imagery; haralick's texture parameters; statistical analysis; urban feature extraction; classification

INTRODUCTION

The texture of an image gives us the information about the spatial arrangement of colours or intensities. It contains the important information about the structural arrangement of surfaces and their relationship to the surrounding environment. The analysis of these spatial distributions of grey level variations which is able to point out the geometrical structures of an image is called as texture analysis. The textural information is the one which defines the contrast, uniformity, rugosity or regularity of the image. The texture of an image is a function of the texture surface, its albedo, the illumination and the camera and its viewing position. There are several computations

http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

of computing texture. The Haralick's texture computation has been taken into consideration in this study.

The criteria which are to be considered in calculating Haralick's texture parameters are directions, displacement and kernel size. Kernel sizes of 3x3, 5x5 and 7x7 were chosen and texture parameters were computed. For direction criteria, 0°, 45°, 90° and 135° were taken into consideration and one pixel is the displacement applied. The optimal criteria necessary for the urban feature retrieval were statistically analyzed and used in this project.

BACKGROUND CONCEPT

Satellite imagery is a raster image which is composed of pixels. Each pixel has a specific spectral value based on the radiation acquired by the sensor from the object at the time of acquisition.

The textural parameters are computed from the Gray Level Co-occurrence Matrices (GLCM). A co-occurrence matrix is a two-dimensional array in which both the rows and the columns represent a set of possible image values. For example, for gray-tone images, the image values can be the set of possible gray tones and for color images, it can be the set of possible colors.

The value of each cell in the array, say (i, j) indicates how many times value i co-occurs with value j in some designated spatial relationship. Let d be a displacement vector (dr, dc) where dr is a displacement in rows (downward) and dc is a displacement in columns (to the right). Let V be a set of gray tones. The gray-tone co-occurrence matrix Cd for image I is defined by

Cd (i, j) = $\{(r, c) | I(r, c) = i \text{ and } I(r + dr, c + dc) = j\}$ (1)

The Fig. 1 illustrates this concept with a 4 x 4 image I and three different co-occurrence matrices for I: C(0,

1), C(1, 0), and C(1, 1).

Figure 1. Computation of Co-occurance Matrices.

From the GLCM, the thirteen Haralick's texture features were computed. They are:

184

(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

Homogeneity, Contrast, Dissimilarity, Mean, Standard Deviation, Entropy, Angular 2nd moment, Correlation, GLDV Angular 2nd moment, GLDV Entropy, GLDV Mean, GLDV Contrast and Inverse Difference.

MATERIALS

High resolution imagery of a dense urban region is the primary data used for the project. IKONOS image of SanDiego city, California, USA is used for the project which has spatial resolution of 1m. SanDiego is the most important city in California which has a dense urban region. Software such as PCI Geomatica and ERDAS Imagine were used for computation of texture parameters and other processes. Microsoft Excel worksheet was used for statistical computation and analysis. Fig. 2 is the true colour IKONOS image of a part of SanDiego city.

Figure 2. IKONOS image of SanDiego city.

METHODOLOGY

Texture analysis is computed for the IKONOS imagery considering the two criteria such as direction and kernel size. The statistical computations are made for each Area of Interest (i.e.) each urban feature, so as to examine the optimal criteria which are best suited for urban feature retrieval. The texture parameters thus chosen are layer stacked and unsupervised classification is carried out to classify the urban features based on the texture parameters.

The image classification based on texture involves a series of procedures which is given in a flow chart in figure 3. Each layer of Haralick's texture parameter were computed and analyzed individually for each kernel size, each direction and each area of interests. Nearly about 936 images were analyzed individually so as to conclude with the optimal texture layers required for the urban feature extraction.

Statistical methods were adopted in the texture analysis of each layer. The separability analysis proved the variation between the various areas of interest provided

http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

RESULTS AND DISCUSSION

A. Texture Analysis

The texture analysis was carried out over the imagery and all thirteen Haralick's texture parameters were computed for directions such as 0° , 45° , 90° and 135° and for kernel sizes 3x3, 5x5, 7x7.

B. Statistical Analysis

Statistical mean for each layer obtained from texture analysis were computed and were compared. Results based on direction criteria displayed in the charts in the following Fig. 4 shows that all the four directions are of considerable importance in urban feature extraction. Thus all directions are taken into consideration in the further procedures. In case of the kernel sizes, it was observed that there was not much variation in the statistical analysis based on kernel size criteria, thus kernel size of 5x5 is chosen as the optimal.

(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

Figure 4. Statistical Mean for three Kernels and thirteen Texture Layers.

Statistical mean was also computed for each urban feature (AOI) in each layer of texture parameter so as to choose the layers which are of considerable importance in classifying the urban features. Concrete buildings, Red tiled buildings, Dense and sparse vegetation, Roads and Barren land were the various AOI's.

From the statistical analysis based on these urban features the six texture parameters were found to be of considerable importance in urban feature extraction. They are: Contrast, Mean, Dissimilarity, GLDV Entropy, Standard Deviation, GLDV Angular 2^{nd} moment. The chosen layers of 5 x 5 kernel and 45° direction is shown in the following Fig. 5. These texture parameter layers are layer-stacked and used for the further procedures.

Figure 5. Selected Texture Layers.

C. Separability Analysis

The separability analysis determines that how far each class varies from each other. This difference helps us to understand the distinguishable nature of each class in the image. The separability matrix was computed using Jefferies Matusita distance computation.

187

(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

Distance measure: Jefferies-Materita								
Using Layers: 123456								
Combination: 123456								
Takes 6 at a time								
SuS 0 seearability								
Best Average Separability: \$61,815								
Signature name	Pure urban	Mined urban	MU with med size build	Slam	Urban with little way	Urban with med veg	Urban with dense veg	Vegetation.
Pare urban		300 162	912,955	692 131	736.673	727.588	918.613	1408.36
Mixed arbas	310.162		902.528	715.908	612.367	594,534	ML014	1299.60
Mixed arbas with medians size building	872,903	902.338		1002.24	811.968	53.814	623.209	1250
Slam	892 191	713,906	1002.24	. 0	819,312	\$18,915	\$29.019	1387,27
Urban with little weg	758.673	612.367	\$10.968	\$19,312		502.276	513.545	-1288.45
Crhan with medium yeg	727.58	5 594,934	531.816	818.903	302.276	6	498,245	1295.11
Urban with dense veg	948,613	861.014	423.209	925.009	110,245	486,345		1131.07
Vegetation	3406.38	1395-45	1250	1387.27	1289.45	1290.11	1130.47	
5x5 45 separability								
Best Average Separability: 805.18								
Signature name	Pure urban	Mixed urban	MC with med the build	Stam	Urban with little veg.	Urban with med. veg-	Urban with denne weg	Vegetation
Pare athan		400.090	982.706	£55.321	185.321	753.451	973.436	5405.84
Mixed arban	+01.091		896.790	190.402	590.402	515.855	791,448	1394.88
Mixed urbas with medium size builds	912,70	196.791	0	\$45.6TT	845.671	570.475	661.053	1219.60
Slam	855.321	590,412	\$45,677	0	0	480.00	511.988	1268.98
Urban with little veg	855 321	590.412	845.677	.0		-110	511.565	1268.96
Urban with medium yeg	752.40	513.851	510.475	480.507	480.867		446,442	1297.7
Urban with denie veg	\$73.404	791,448	661.053	512,989	512,909		- 200	1313.05
Vegetation	143.54	1314.88	1234-85	1265.98	1345.98	1287.7	E113.45	. 0
5s5 90 separability								
Best Average Separability: 843.854								
Signature name	Pare other.	Mixed arbas	MU with med_size build	Slam	Urban with little (19)	Crise city and sug	Urban with dense veg	Vegetation
Pare urbas	. 6	371.404	975.378	136.679	B2284	10 ,81	905/032	1405.75
Mixed urban	371.404	E	840.38	189,134	318.173	の時間	7\$1.45	1392.96
Mixed arban with mediam size buildin	975.178	E		.912.791	748.081	and the	616.24	1271.82
Slam	636.479	639.134	984.798	0	651.902	1212	81.06	1386.64
Urban with little neg-	685.664	£ 515-179	148.081	#50.992		- 349.45	543.384	1295,94
Urban with medium yog	347.48	1 538.224	589-985	#25.422	309.02		439.945	1304.25
Urhan with dense veg	905.003	791.69	616.24	RITTE	545.284	429.945		1080.46
Vegetation	3405.75	1392.96	1271.80	1964	1296.94	1304.25	- File	. 0
5s5_135_separability								
Best Average Separability \$23,856								
Signature name	Pare urban	Mixed urban	MU with med sizebaild	Slam	Urban with little veg	Urban with med_yeg	Urban with dense very	Constantion
Pare arban		489.704	111 921	#14,738	631	713.427	109.34	1399.43
Mixed urban	489.704	4	548.46	815 792	131344	481.121	754	1348.33
Mixed other with medium size builds:	912 921	848.48		969.75	749,417	590.348		1225.89
Slem	64.79	415.732	B69-75	. 0	教育	745.152	894.224	10444
Urban with little vog	618.1	57.344	all let	16-282		995 402	513.110	1280.94
Urbas with median veg	713.421	483-123	128.45	16.12	. 39560		408.006	1281.97
Urban with dense veg	\$39.28	716.96	200-527	- 18 A	546	38.00		1128.47

Figure 6. Separability Matrix by Jefferies-Matusita Algorithm.

The JM distance values range between 0 and 1414. The distances closer to the higher limit specifies that those classes are of high separability and ones which have the values closer to the lower limit indicate that the classes are inseparable. Fig. 6 shows the JM separability matrix.

D. Classification and Accuracy Assessment

The layer-stacked imagery is made to undergo unsupervised classification by K-means algorithm. Based on the texture parameters, the image was classified as Roads, Trees, Concrete Buildings, Red-tiled Buildings, Barren Land and Wooden Buildings. The classified imagery is shown in Fig. 7.

The accuracy assessment was carried out for the classified imagery and it was examined that 88% accuracy was obtained.

(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

Figure 7. Separability Matrix by Jefferies-Matusita Algorithm.

CONCLUSION

Texture analysis over an urban area was found to be of good advantage in extraction of urban features. 88% accuracy which was obtained has proved that texture is a good parameter for classifying urban features in high resolution imagery. The separability between the different classes proved to be of good significance in order to distinguish the different urban and sub-urban classes. Incorporating the spatial relationships in the classification of images along with the spectral relationships brings out best classification results. The statistically chosen six parameters have also proved valid structurally too.

REFERENCES

- S. Robert M. Haralick, K.Shanmugam and ITS'HAK Dinstein (1973), "Textural Features for Image Classification", IEEE Transactions on Systems, Man and Cybernetics, Vol.3, No.6, pp.610-621.
- T. Manik Varma and Andrew Zisserman (2004), "A Statistical Approach to Texture Classification from Single Images", Robotics Research Group, University of Oxford, Oxford, UK.
- U. Jitendra Malik, Serge Belongie, Thomas Leung and Jianbo Shi (2001), "Contour and Texture Analysis for Image Segmentation", International Journal of Computer Vision, Vol.43, No.1, pp.7-27.
- V. Kiranmayee.M and Subbarao.M (2012), "Texture Classification using Weighted Probablistic Neural Networks", International Journal of Image Processing and Vision Sciences, Vol.1, Issue.2, pp.38-40.
- W. Paidamwoyo Mhangara and John Odindi (2013), 'Potential of Texture-based Classification in

189

(IJRST) 2016, Vol. No. 6, Issue No. III, Jul-Sep

e-ISSN: 2249-0604, p-ISSN: 2454-180X

Urban Landscapes using Multispectral Aerial Photos', South African Journal of Science, Vol.109, No.3, pp.1-8.

- X. Rellier G., Descombes X., Falzon F. and Zerubia J. (2004), 'Texture Feature Analysis using a Gauss-Markov model in Hyperspectral Image Classification', Geoscience and Remote Sensing, IEEE Transactions, Vol.42, No.7, pp.1543-1551.
- Y. Shervan Fekri Ershad (2011), 'Colour Texture Classification Approach based on Combination of Primitive Pattern Units and Statistical Features', The International Journal of Multimedia and its Applications (IJMA), Vol.3, No.3.
- Z. Xiuwen Liu and Deliang Wang (2003), 'Texture Classification using Spectral Histograms', IEEE Transactions on Image Processing, Vol.12, No.6, pp.661-670.
- AA. Yun Zhang (2001), 'Texture-Integrated Classification of Urban Treed Areas in High-Resolution Colour-Infrared Imagery', Photogrammetric Engineering and Remote Sensing, Vol.67, No.12, pp.1359-1365.
- BB. Shervan Fekri Ershad (2011), 'Texture Classification Approach based on Combination of Edge and Co-occurance and local Binary Pattern', *International Conference IP, Computer Vision and Pattern Recognition (IPCV '11), pp.626-629.*