(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

ISSN: 2249-0604

FAULT DETECTION BASED ON IMPEDANCE VALUES FOR THE DISTRIBUTED GENERATING SYSTEM

R.Arunkumar¹ and M.Sujith²

¹U.G. Student, Department of EEE, IFET College of Engineering, Villupuram-605108 ²Senior Assistant Professor, Department of EEE, IFET College of Engineering, Villupuram-605108

ABSTRACT

This main objective of the project is to identify the fault occurring in the grid connected distributed generating system and also isolates the particular affected areas. To deliver the power to the customer in an efficient manner the impedance values are should maintain at a constant level. If the impedance value of any one of DG's are varies, it affects the entire grid connected systems. This method is based on injecting two non-characteristics harmonic currents to the grid and the appropriate harmonic voltages are developed at the Point of Common Coupling (PCC) and impedance is calculated. Newton Raphson method is involved for the impedance calculation. The work is carried out under the MATLAB Environment, the results are verified theoretically and by simulation

Keywords: fault, distributed generating systems, isolation, injection of fault, impedance.

INTRODUCTION

The consumption of the electrical energy is increased day by day, so the demand in the electrical energy is increased in recent days. The non-renewable sources (thermal, nuclear & diesel) are not able to meet the entire load demand. To meet out the demand in the power system the non-renewable sources are arise. In the Distributed energy systems solar cells, windmills and the photo voltaic cells are the largest utilization nowadays. The power electronics devices are mostly used in all areas of the power system it affects the quality of electrical power and also creates faults. To prevent the grid connected system from the various faults an islanding situation is achieved the islanding situation in an easiest way and takes less amount of time.

To achieve the islanding situation passive methods (inverter resident method) if any power mismatch is occurred in the power system due to the variation in power system it is automatically disconnected. This method is normally easy to implement and the non-detection zones is very high are discussed in [1]. The islanding detection of multiple parallel connected inverter are isolated by introducing the high frequency signals. There are two types of inverter are employed for the islanding detection, they are master and slave inverter. The master inverter is used for injecting high frequency signals and the slave inverter is works in high frequency current cancellation mode. If any problem is occurred in the master inverter the remaining inverters are automatically assigning the role of master inverter [2]. The high frequency signal injection for the periodic variation in the converter output, which gives the variation between the voltage and the current from that the values the impedances are

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

ISSN: 2249-0604

calculated and islanding is achieved. The two different high frequency signals are in the range of 75Hz and 400Hz are injected to the zero crossing of grid voltage [3]. The another method involved for the continuous signal injection to the grid and it also allowed the instantaneous detection of island[4], but this method is leads to increase the Total Harmonic Distortion (THD). To extract the voltage and the current signals from the Point of Common Coupling (PCC) the Autoregressive (AR) modelling are used. Then the Support Vector Machine (SVM) is used for achieving islanding state [5]. This islanding is occurs when a part of power system is accidently disconnected from the main grid while it is energized by the local Distributed Generations(DG's), no need to supervise the islanding system. In recent days the photovoltaic inverters are mostly used. In the photo voltaic isolation a Micro transformer is used [6], it have the primary and the secondary windings. It transfers the signals from one side to another side, the signals are transferred from the primary side to the secondary side. Before the signal transmission they are encoded at the primary side of the transformer, at the secondary's the transferred signals are decoded. The online method for detecting and locating a faulty areas in the utility grid for smart grid [7]. A high frequency (A-Band) current signals are vaccinates to the grid that carry out the harmonic voltage, the voltage are in the range of less than 1 volt. By comparing the voltage and current the impedance variation is calculated. This method is not affect the normal power flow, detection is achieved in online method. Three phase power factor correction rectifiers are used for the harmonic current injection [8]. In this method the harmonic current is generated by the only one switching leg. It need less amount of cost compared to the conventional six-arm pulse width modulation, the input current total harmonic distortion is 8.5% for the approximate load of 1 kW. The passive islanding detection methods are discussed in paper [9], a statistical signal processing algorithm is developed for the parameter estimation. The signal parameters are estimated with the help of rotational invariance technique and find the voltage and frequency at the point of common coupling. Cross validation was used to measure the performance of the islanding detection method. By exciting the LCL filter at the resonance $(X_L=X_C)$ condition the impedance is calculated [10]. From that the impedance variation the islanding situation is obtained. The main drawback of the system is how to excite the system resonance in a controlled manner

II. EXISTING SYSTEM

To achieve the islanding situation they are find out the impedance value of the grid connected Distributed Generating systems. The harmonic current injection are used to find the impedance value of DG's and also helps to isolation. A small power three phase full bridge inverter is employed to inject the harmonic currents. It supplies two non-characteristics of harmonic current in the frequency range of 75Hz and 125Hz to the grid. And the appropriate harmonic voltage are developed at the PCC. Three impedances are connected in series to output of the inverter it stimulates the grid condition. The current and the voltage references are taken from the voltage lines for the calculation of impedances. The ADC is used for convert the analog signal into digital signal which is suited for the impedance calculation. A Discrete Fourier Transform (DFT) is used for the impedance calculation by comparing the

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

ISSN: 2249-0604

28

voltage and the current references the impedance vales are detected. Then it sent to the power converter for the islanding.

A 500-VA three-phase full-bridge inverter is employed to inject the harmonic currents. Both the conventional method and modified one are realized with experiments. The laboratory prototype is shown in Figure. 1. Three impedances are series connected with voltage sources to simulate the grid conditions. The utility three phase grid is not suitable for clarifying the proposed method because the grid-connected sources and loads are uncertain and the grid impedances changes randomly. Three L filters are utilized and the inductor values are all 50 mH. The DC bus voltage is chosen 700 V and the capacitor in the DC bus is 340 uF to keep the inverter operate smoothly. The sampling frequency and the discrete control frequency are both chosen 18-kHz which is much higher than the fundamental frequency 50-Hz and the injected harmonic currents frequencies 75-Hz, 125-Hz, which insured the output current quality and the accuracy of DFT operation.

III . PROPOSED SYSTEM

A synchronous machine is connected to an infinite bus through a transformer and a double circuit transmission line, as shown Figure.2. The infinite bus voltage V=1.0 p.u. The direct axis reactance of machine is 0.20 p.u, The transformer reactance is 0.10 p.u Reactance of each transmission line is 0.40 p.u, All to a base of rating of synchronous machine. Initially the machine is delivering 0.8 p.u power with terminal voltage of 1.05 p.u. The inertia constant H=5 MJ/MVA. All resistances are neglected. The equation of the machine rotor is to be determined.

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

29

ISSN: 2249-0604

Figure.2 Example system

 ω_R -Provided by U.S – internal data for rotating machine in English unit. Moment of inertia will derived from mixture of MKS quantity. ω_R – Kinetic energy of rotating body– standard. Equation (I) we observe that resulting swing equation is non-linear. From Figure.3 fault is applied at the sending node 4 of the transmission line. Considered a three phase fault that presents balance impedance of j0.1 to Neutral.

Figure. 3 Faulted network in terms of admittance

By Y- Δ transformation we compute

 $\overline{Y}_{12} = -j [(3.333x5)/18.33] = -j0.909$ And since $\overline{Y}_{12} = -\overline{Y}_{12}$ Then $\overline{Y}_{12} = j0.909$

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

The electrical power output of the machine is now

 $Pe = (0.909x1.1111) Sin\delta$

 $= 1.010 Sin\delta$

Equation of motion of rotor is

$$\frac{d^2\delta}{dt^2} = \frac{377}{10} (0.8 - 1.010 \text{ Sin}\delta) \text{ rad }/\text{s}^2$$

(II)

(III)

(IV)

At start of rotor of transient $\sin \delta_0 = 0.36$ and the initial rotor acceleration is given by

$$\frac{d^2 \delta}{dt^2} = \frac{377}{10} \left[0.8 - (1.010 \times 0.368) \right]$$
$$= 16.45 \text{ rad/s}^2$$

- It is that after some time the

Assume that after some time the circuit breaker at sending end of the faulted line clears the fault by opening that line. The network now will have a series reactance of j0.70 p.u (j0.20 + j0.10 + j0.40) and new network (with fault cleared) will have a new value of transfer admittance

$$\overline{Y}_{12} = j1.429 \text{ p.u}$$

The new swing equation will be

$$\frac{d^2\delta}{dt^2} = 37.7(0.8 - 1.587\text{Sin}\delta) \text{ rad/s}^2$$

(a)Fault Calculation

The equation for ' δ ' were obtained in previous process. δ - function of time for the system. Assume fault is cleared in nine cycles (0.15s).

The non-linear equation is obtained in the previous steps, using numerical integration, the modified Euler method is used in this problem.

First, the swing equation is replaced by two first order differential equations

 $\delta = \omega(t) - \omega_R$

 $\omega = (\omega_{\rm R} / 2{\rm H}) \left[{\rm P}_{\rm m} - {\rm P}_{\rm e}({\rm t}) \right]$

The time domain is divided in to increments called Δt . with values of δ and ω and their derivations known at some times t, an estimate is made of the values of these variables at the end of interval of time Δt , at time t + Δt . These are called predicted values of variables based only on values of $\delta(t)$ and $\omega(t)$ and their derivatives.

From the calculated values of $\delta(t + \Delta t)$ and $\omega(t + \Delta t)$ values of derivatives $t + \Delta t$ are calculated. A corrected value of $\delta(t + \Delta t)$ and $\omega(t + \Delta t)$ is obtained using mean derivative over the interval the process can be repeated until a desired prediction is achieved. At the end of prediction and correction a final value of $\delta(t + \Delta t)$ and $\omega(t + \Delta t)$ is obtained.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

ISSN: 2249-0604

30

(2)

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

ISSN: 2249-0604

Initial value of δ is Sin⁻¹ 0.368 and the equation for ω is

 $\omega = 37.7(0.800 - 1.010 \operatorname{Sin\delta}) \quad 0 \leq t \leq 0.15$ (IV) = 37.7(0.800 - 1.587 Sin\delta) $t \geq 0.15$

IV EQUAL AREA CRITERION

Equal area criterion curve shown in Figure.4. Consider swing equation for a machine connected to an infinite bus derived previously in the form

Equation (8) is the relative speed of m/c w.r.to reference frame moving at constant speed (by definition of angle δ).

For stability this speed must be zero when the acceleration is either zero or is opposing the rotor motion.

Thus for a rotor that is accelerating, the condition of stability is that a value δ_{max} exists such that

 $Pa(\delta_{\max}) \le 0 \text{ and } \int_{\delta 0}^{\delta \max} Pa \, d\delta = 0 \tag{9}$

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

31

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

ISSN: 2249-0604

Figure. 4 . Equal Area Criterion Curver

(a)Critical Clearing Angle

For a system of one machine is connected to infinite bus and for a given fault and switching arrangement, the initial clearing angle is that the switching angle for which the system is at the edge of instability. The maximum δ_{max} corresponds to the angle of δ_m on the fault cleared angle.

Pm = peak of prefault power angle curve.

- r_1 = ratio of power angle curve for fault network to Pm
- r_2 = ratio of peak of power angle curve of network with fault cleared to Pm.

$$\delta_{o} = \operatorname{Sin}^{-1} P_{m} / P_{M} < \pi/2$$

$$\delta_{m} = \operatorname{Sin}^{-1} P_{m} / P_{M} r_{2} > \pi/2$$
(10)

Then for $A_1 = A_2$

And for critical clearing

$$\delta c = \cos^{-1}\{[1/r_2 - r_1] [(P_m/P_M) (\delta m - \delta o)]$$

 $(r_2 \cos \delta m - r_1 \cos \delta o)]$

(11)

(b)Equal Area Criterion for Two Machine System

Two machine system can be reduced to an equivalent system of one machine connected to an infinite bus

$$\int_{b120}^{b12} \left(\frac{P_{a1}}{H_1} - \frac{P_{a2}}{H_2} \right) d\delta_{12} = 0$$
(12)

Where $\delta_{12} = \delta_1 - \delta_2$

In special case where the resistance is neglected the equation (12) becomes,

$$\frac{1}{H_0} \int_{\delta 120}^{\delta 12} \text{Pa1 } d\delta 12 = 0 \tag{13}$$

Where

 $H_0 = H_1 H_2 / (H_1 + H_2)$

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

32

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

Assumption made:

- a) Mechanical power input is constant
- b) Damping or asynchronous power is negligible
- c) Constant voltage behind transient reactance model for synchronous machine is valid.
- d) The mechanical rotor angle of machine coincides with angle of voltage behind transient reactance.
- e) Loads are represented by passive impedance from the nine bus system.

V. RESULTS AND DISCUSSION

We discussed in earlier, introducing the three phase fault in the nine bus system Figure.5 and check the impedance value in interconnected bus node. Considered the fault occurs in bus 7 for t=0.15 s and the characteristics value of impedance are obtained through the power system analysis tool in Matlab Environment, observed waveform in P.U and obtained the fault impedance value and corrected impedance value after the fault cleared in the bus 7 for verifying the designed system.

From the power system analysis tool, four type of solver is available, we used Newton Raphson method for calculating the y-bus value after that we calculate the convergence error and verified the impedance value in theoretical calculation. Calculated power flow time shown in Figure.7(a-d).

http://www.ijrst.com

ISSN: 2249-0604

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

34

ISSN: 2249-0604

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

ISSN: 2249-0604

PF solver: XB fast decoupled method

Single slack bus model

Iteration = 1 Maximum Convergency Error = 0.93842

Iteration = 2 Maximum Convergency Error = 0.011607

Iteration = 3 Maximum Convergency Error = 0.00018908

Iteration = 4 Maximum Convergency Error = 7.8476e-006

Initialization of Synchronous Machines completed.

Power Flow completed in 0.049 s

Figure 6(b): XB fast decoupled method

PF solver: Runge-Kutta method

Single slack bus model

- Iteration = 1 Maximum Convergency Error = 0.10294
- Iteration = 2 Maximum Convergency Error = 0.036751
- Iteration = 3 Maximum Convergency Error = 0.011736
- Iteration = 4 Maximum Convergency Error = 0.0055474
- Iteration = 5 Maximum Convergency Error = 0.0026266

Power Flow completed in 0.05 s

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

ISSN: 2249-0604

Figure 6(d): Robust power flow method

Continuation Power Flow - Single Slack Bus

Corrector Method: Perpendicular Intersection
Check Voltage Limits: No
Check Generator Q Limits: No
Check Flow Limits: No
Point = 1 lambda = 0 $kg = 1.9994$
Point = 2 lambda = 0.14189 kg = 1.7177
Point = 3 lambda = 0.28237 kg = 1.4382
Point = 4 lambda = 0.42121 kg = 1.1615
Point = 5 lambda = 0.55816 kg = 0.8879
Point = 6 lambda = 0.69286 kg = 0.6182
Point = 7 lambda = 0.82481 kg = 0.35324
Point = 8 lambda = 0.95334 kg = 0.09427
Point = 9 lambda = 1.0775 kg =-0.1569
Point = 10 lambda = 1.1958 kg =-0.39751
Point = 11 lambda = 1.3058 kg =-0.62318
Point = 12 lambda = 1.4038 kg =-0.82653
Point = 13 lambda = 1.483 kg =-0.99459
Point = 14 lambda = 1.5319 kg =-1.105
Point = 15 lambda = 1.5353 kg =-1.1275
Point = 16 lambda = 1.4875 kg =-1.0486
Point = 17 lambda = 1.4025 kg =-0.89433

	International Journal of	http://www.ijrst.com									
	(IJRST) 2015, Vol. No. 5,	ISSN: 2249-0604									
	Point = 18 lambda = 1.2	2979 kg =-0	0.69914								
	Point = 19 lambda = 1.2	184 kg =-0	.48354								
	Point = 20 lambda = 1.0)658 kg =-(0.25827								
	Point = 21 lambda = 0.9										
	* Max # of iters at corr										
* Reduced Variable Increments in Corrector Step 0.5											
	Point = 22 lambda = 0.9	93379 kg =-	0.00565								
	Point = 23 lambda = 0.9	92165 kg =	0.01749								
	* Max # of iters. at corre	ector step.									
	* Reduced Variable Inc	rements in Cor	rrector St	ep 0.5							
	Point = 24 lambda = 0.9	90945 kg =	0.04067								
	* corrector solution is to	o far from pre	dictor va	lue							
	* Deschod initial lambd	o F									
		a.		1 50 50							
	* Maximum Loading Pa	rameter lambo	da_max =	= 1.5353							
	Continuation Power Flow	v completed in	n 1.3937 :	S							
		Generator	1	2	3						
		Rated	247.5	192.0	128.0						
		kV	16.5	18.0	13.8						
		P.F	1.0	0.85	0.85						
		Туре	Hydro	Steam	steam						
		Speed	180 r /	3600 r /	3600 r /						
		Specu	min	min	min						
		Xd	0.1460	0.8958	1.3125						
	x _d 0.0608 0.1198 0.1813										
	$\mathbf{x}_{\mathbf{q}}$ 0.0969 0.8645 1.2578										
		τ'_{qo}	0	0.535	0.600						
		Reactance va	alues are	in p.u on a	100						
		MVA base.	All time o	constant in	s.						
		Tab	ie. I. Gen	erator Data	l						

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

Data need for perform the calculation:

- 1) A load flow study of pretransient network to determine the mechanical Power Pm, of the generator and to calculate the values of $E_1 \angle \delta io$ for all generators. The equivalent impedance of loads are obtained from load bus data.
- 2) System data follows
- a) The inertia constant H and direct axis transient reactance X_d for all generators.
- b) Transmission network impedances for the initial network condition and subsequent switching such as fault clearing and breaker reclosing's.
- 3) The type and location of disturbance, time of switching and maximum time for which a solution is to be obtained.

The disturbance initiating the transient is a three phase Fault occurring near bus7 at the end of line 5-7. The fault cleared in five cycles (0.0835s) by opening line5-7. The generator are represented by the classical models and loads by constant impedance. The damping torque is neglected.

		Bug	Impedance			Admittance				
		Dus		R	X			G	B	
	Generator			0	0.11			<u>,</u>	0.447	2
	No.2	2-7		0	0.18	23		0	-5.4855	5
	No.3	3 - 9		0	0.23	99		0	-4.1689	9
		4 - 5	0.0	100	0.08	50	1.	3652	-11.604	1
		4-6	0.0	170	0.09	20	1.9	9422	-10.510	7
	T <mark>ransm</mark> issi on line	5-7	0.0	320	0.16	10	1.	1876	-5.9757	7
		6-9	0.0	390	0.17	00	1.2	2820	-5.5882	2
		7 - 8	0.0	085	0.07	20	1.0	5171	-13.698	0
		8-9	0.0	119	0.10	08	1.	1551	-9.7843	3
	Shunt									
	Load A	5-0		-	-		1.2	2610	-0.2634	1
	Load B	6–0		-	-		0.	877	-0.0346	5
	Load C	8-0		-	-		0.9	9690	-0.1601	1
		4 - 0		-	-			-	0.1670)
				-	-			-	-	
		7 - 0		-	-			-	0.2275	5
		9 - 0		-	-			-	0.2835	5

Table2.Prefault Network for system

The reactive power, real power, voltage profile waveform is obtained when the fault occurred in the system shown in Figure.7(a-d) through Matlab run time environment for system shown in Figure.5.

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

http://www.ijrst.com

ISSN: 2249-0604

Figure 7(a): Reactive power profile

Figure 7(c): Voltage Magnitude Profile

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

ISSN: 2249-0604

Figure 7(d) :Voltage Phase Profile

The calculated y bus value for the prefault network, faulted network, cleared fault network is given in the Table 3 (a-c)

Table 5(a). I bus marrix of prefault network												
Nod	1	2	3	4	5	6	7	8	9			
e												
1	j8.445 9	-	-	j8.4459	-	-	j5.4855	-	-			
2	-	j5.488 5	-	-	-	-	-	-	j4.1684			
3	-	-	j4.168 4		-	-	_	-	-			
4	j8.445 9		-	3.3074 j30.393 7	-1.3652 + j11.604 1	-1.9422 + j10.510 7	-	-	-			
5	-	-	-	-1.3652 + j11.604 1	3.8138 - j17.842 6	_	-1.1876 + j5.9751	_	-			
6	-	-	_	-1.9422 + j10.510 7	-	4.1019 - j16.133 5	-	-	-1.2820 + j5.5882			
7	-	j5.485 5	-	-	-1.1876 + j5.9751	-	2.8047 - j24.931 1	-1.6171 + j13.698 0	-			
8	-	-	-	-	-	-	-1.6171 +	3.7412	-1.1551 +			

Table 3(a): Y bus matrix of prefault network

41

http://www.ijrst.com

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

ISSN: 2249-0604

							j13.6	598	j23.642	j9.7843
							0		4	
			j4.168		-1.	2820			-1.1551	2.4371
9	-	-	4	-	- j5.:	+ 5882	-		+ j9.7843	j19.257 4
			Table 3(b):Y bus ma	trix of faul	t netw	ork			
Nod	Nod 1 2 3 4 5 6 7									9
e										
1	j8.445 9	-	-	j8.4459	-			-	-	-
2	_	j5.485 5	-	-	-	-		-	-	-
3	-	-	j4.168 4	-	-			-	-	j4.1684
4	j8.445 9	-	-	3.3074 - j30.393 7	-1.3652 + j11.604 1	-1.94 + j10.1	422 - 510	-		-
5	-		-	-1.3652 + j11.604 1	3.8138 - j17.842 6			_	-	-
6	-		-	-1.9422 + j10.510 7		4.10)19 - 133	-	-	-1.2820 + j5.5882
7	-	-	-	-	-	-		-	-	-
8	-	-	-	-	_	-		-	3.7412 - j23.642 4	-1.1551 + j9.7843
9	-	-	- j4.168 4	-	_	-1.2 + j5.5	820 - 882	-	-1.1551 + j9.7843	2.4371 - j19.257 4

Nod e	1	2	3	4	5	6	7	8	9
1	j8.445 9	-	-	j8.4459	-	-	-	-	-

42

http://www.ijrst.com

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

ISSN: 2249-0604

2	-	j5.488 5	-	-	-	-	j5.4885	-	-
3	-	-	j4.168 4	-	-	-	-	-	j4.1684
4	j8.445 9	-	-	3.3074 - j30.393 7	-1.3652 + j11.604 1	-1.9422 + j10.510 7	-	-	-
5	-	-	-	-1.3652 + j11.604 1	2.6262 		_	-	-
6	-	-	-	-1.9422 + j10.510 7		4.1019 - j16.133 5	-	-	-1.2820 + j5.5889
7	-	j5.488 5	-				1.6171 - j18.955 9	-1.6171 + j13.698 0	-
8	_	-	-		-	1	-1.6171 + j13.698 0	3.7412 - j23.642 4	-1.1551 + j9.7843
9	-		j4.168 4		-	-	-	-1.1551 + j9.7843	2.4321 - j19.257 4

Table 5. Y bus matrix of network after fault cleared

VI CONCLUSION

The fault detection in the grid connected distributed generating systems is presented in this work. Many distributed systems are operated at different impedance level. By introducing the fault into the network the impedance values are changed. In this method we are using NR method for the impedance calculation. It calculates the impedance at three different conditions. The fault is cleared in nine cycles (0.15s).By comparing the RK method, and FDLF method the NR method is takes less number of iteration to find the impedance value. So the proposed method is suitable for the islanding and fault clearing in a short time duration.

http://www.ijrst.com

(IJRST) 2015, Vol. No. 5, Issue No. I, Jan-Mar

ISSN: 2249-0604

VII REFERENCES

[1] A. Timbus, A. Oudaloy, and C. N. M. Ho, "Islanding detection in smart grids," in Proc. IEEE Energy Convers. Congr. Expo. sep. 2010, pp.3631-3637.

[2] David Reigosa, Fernando Briz, Cristian Blanco, Pablo Garcia, and Juan Manuel Guerrero, "Active Islanding Detectio for Multiple Parallel-Connected Inverter –Based Distributed Generators Using High- Frequency Signal Injection," in IEEE TRANSCATION ON POWER ELECTRONICS, VOL. 29, NO. 3, MARCH 2014.

[3] A. V Timbus , R. Teodorescu , and U. Borup, "Online grind impedance measurement suitable for multiple PV inverters running in parallel," Proc. IEEE Appl. Power Electronics, Conference., pp. 907-911, Mar. 2006.

[4] D.Reigosa, F. Briz, C. Blanco, P.Garcia, and J. M. Guerrero, "Active islanding detection using high frequency signal injection," IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1588-1597, Sep./Cct.2012.

[5] Biljana Matic-Cuka, Student Member, IEEE, and Mladen Kezunovic, Fellow, IEEE," Islanding Detection for Inverter-based Distributed Generation using Support Vector Machine Method".

[6] Baoxing Chen, Fellow, "Integration of isolation for Grid-Tied Photovoltaic Inverters". Analog Devices, Inc.

[7]Amir Mehdi Pasdar, Yilmaz Sozer, and Iqbal Husain, Fellow, "Detection and Locating Faulty Nodes in Smart Grids Based on High Frequency Signal Injection". IEEE Trascations on Smart Grid, VOL. 4, NO. 2, JUNE 2013

[8] Jun-Ichi Itoh, and Itsuki Ashida "A Novel Three-Phase PFC Rectifier Using a Harmonic Current Injection Method" IEEE Trancation on Power Electronics, VOL. 23, NO. 2, MAR.2008.

[9] Waleed K. A. Najy, H.H. Zeineldin, Ali H. Kasem Alaboudy, and Wei Lee Woon, "A Bayesian Passive Islanding Detection Method for Inverter-Based Distributed Generation Using ESPRIT" IEEE Trancation On Power Delivery, VOL. 26, NO. 4, October 2011.

[10] Marco Liserre, Frede Blaabjerd, and Remus Teodorescu, "Grid Impedance Estimation via Excitation of LCL-Filter Resonance" IEEE Transcation On Industrial Applications, VOL. 43, NO. 5, September/October 2007.