
International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2014, Vol. No. 4, Issue No. I, January-March

ISSN: 2249-0604

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 41

In this paper we describe variable and expression declaration, declaration of range variable (array

etc.) in c++ox. These all concepts are defined in c++ but in this we face some problems. Like when

we are declaring any variable then we have to mansion data type in front of the variable unless it not

properly read by compiler. Second in array if we wants to store and retrieve the value then we can

access it from its index value in other word we have to mansion array’s index value by iterative

statement. In this paper we show that these above concept is run in easy way and remove all the

problem in c++ox.

Keywords:-auto, decltype, someint, Lambda function, Range loop.

INCREASING COMPILER INTERACTION IN

PROGRAMMING LANGUAGE –C++OX

Shruti Sandal

Research Scholar (Computer Science) JJT University

ABSTRACT

INTRODUCTION

C++ox have some features from which it override the c++.In standard C++ (and C), the

type of a variable must be explicitly specified in order to use it. However, with the advent of

template types and template metaprogramming techniques, the type of something, particularly

the well-defined return value of a function, may not be easily expressed but in c++ox it

express in very easy way. It consist auto and decltype keyword for these types of problem and

Range I use for reference variables. All these concept describe in detail in this paper. [1]

DETERMINATION OF DATA TYPE

Variables can be declared in any language by following syntax:

- Data type variable name;

In above expression each thing must be mansion without giving the data type of variable it is

not recognize its type .So it is necessary in C++ i.e. explicitly define the type. But in C++ox

there are two way to define.

Auto

Decltype

1 Auto: - First, the definition of a variable with an explicit initialization can use the auto

keyword. It is automatically convert into suitable data type according to the compiler of it .In

other word user is not bother for type of variables .ex:

Auto some strange type = boost::bind (&Some Function, _2, _1, some

Object); auto other variable = 5;

http://www.ijrst.com/

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2014, Vol. No. 4, Issue No. I, January-March

ISSN: 2249-0604

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 42

In above example its result comes into integer. It shows the implicit type convergence. The

type of some Strange Type is simply whatever the particular template function override of

boost::bind returns for those particular arguments. This is easily known to the compiler, but is

not easy for the user to determine upon inspection.

The type of other Variable is also well-defined, but it is easier for the user to determine. It is

an int, which is the same type as the integer literal. It is used for reducing the verbosity of

programming code.

2 Decltype: The keyword, decltype can be used to compile-time determines the type of an

expression. This keyword is more useful as compare to auto because auto is only familiar to

compiler but decltype can also be very useful for expressions in code that makes heavy use of

operator overloading and specialized types [6]. For example:

int someInt;

decltype (someInt) other Integer Variable = 5;

In above example whole expression is automatically taken its type [2]. There is no need to

specify the data type of every variable.

USE OF LOOP IN C++OX

C++ defines a Range in its library. Range means represent a controlled list, much like a

container, between two points in that list. These containers are super set of Range. However,

the utility of range concepts is such that C++0x will provide a language feature built around

them.

The statement for will allow for easy iteration over a range concept:

int my_array [5] = {1, 2, 3, 4, 5};

For (int &x: my_array)

{

X *= 2;

}

In above example there is no need to give the index number of variable to access the value

of variable. Simpliy define it as above and get the appropriate result. The second section, after

the ":", represents the range concept being iterated over. In this case, there is a concept map

that allows C-style arrays to be converted into range concepts [3]. This could have been a

std::vector, or any object that conforms to a range concept. In C++ we wants to access the

value in this mode then to have to give its index number with the help of iterative statement

every time .so this is one of the advantage of c++ox over c++.

http://www.ijrst.com/

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2014, Vol. No. 4, Issue No. I, January-March

ISSN: 2249-0604

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 43

APPLICABILITY OF LAMBDA FUNCTION IN C++0X

In previous versions of c++ox library algorithms function such as sorting and searching,

define predicate functions near the invocation of the algorithm function call. The language has

only one mechanism for this: the ability to define a class inside of a function. c++ is not allowed

for it but c++ox have alternative for it i.e. lambda function in it.

The syntax of lambda function is as follow:

[] (int x, int y) {return x + y}

In above returning value do not have name this is only possible when the expression is in the

form of lambda function. In other words in the form of return expression. The return type can

be omitted entirely if the lambda function’s return type is void. The set of variable which is

defined in same scope is known as closure [9]. It is defined as follow:-

std::vector<int> someList;

int total1 = 0;

std::for_each (someList.begin (),

someList.end (), [&total1] (int x)

{ total1 += x

};

std::cout << total1;

In this total1 is the lambda function„s closure. It can change its value and its value is stored as

stack. Closure variables for stack variables can also be defined without the reference symbol

&, which indicates that the lambda function will copy the value. It is possible to use all

available stack variables without having to explicitly reference them:

std::vector<int> someList;

int total1 = 0;

std::for_each (someList.begin (), someList.end (), [&] (int x)

{ Total1 += x

});

According to the above, the lambda function will store the actual stack pointer of the function

it is created in, rather than individual references to stack variables.

If [=] is used instead of [&], all referenced variables will be copied, allowing the lambda

function to be used after the end of the lifetime of the original variables [7].

The default value and this pointer can also be handled by lambda function. Lambda function is

only compiler dependent type and its type is only available for compiler. If it is used as a

function parameter then type must be as template.

http://www.ijrst.com/

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2014, Vol. No. 4, Issue No. I, January-March

ISSN: 2249-0604

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 44

CONCLUSION

In this paper we show that how c++ox make more user friendly environment. Type

determination is automatically in this. There are no need to specify explicitly it with every

variable which is clearly show in this paper. Also describe the new way of specifying the

reference variables (array etc.) and lambda function. In last we can say that this language

(c++ox) is new phase of more user friendly age .In other word compiler play a very important

role in programming because most of concept is built in the compiler, user is only accessing

its feature.

REFERENCES

[1] Alexandrescu, Andrei; Herb Sutter (2004). C++ Design and Coding Standards: Rules and

uidelines for Writing Programs. Addison-Wesley. ISBN 0-321-11358-6.

[2] [Andersen 04] Andersen, et al. “Preliminary System Dynamics Maps of the Insider Cyber-

threat Problem.” Proceedings of the 22nd International Conference of the System Dynamics

Society. Oxford, England, July 25-29, 2004. Albany, NY: System Dynamics Society, 2004.

http://www.cert.org/archive/pdf/InsiderThreatSystemDynamics.pdf.

[3] [ANSI 89] American National Standards Institute. American National Standard for

Information Systems—Programming Language C (X3.159-1989). Washington, D.C., 1989.

[4] [Antill 04] Antill, James. Vstr documentation -- overview. http://www.and.org/vstr.

[5] Becker, Pete (2006). The C++ Standard Library Extensions: A Tutorial and Reference.

Addison-Wesley. ISBN 0-321-41299-0.

[6] J. Järvi, B. Stroustrup, D. Gregor, J. Siek, G. Dos Reis (September 12, 2004) Doc No: N1705

Decltype (and auto)

[7] [Koenig, Andrew; Barbara E. Moo (2000). Accelerated C++ - Practical Programming by

Example. Addison-Wesley. ISBN 0-201-70353-X.

[8] Lois Goldthwaite (October 5, 2007) Doc No: N2437 Explicit Conversion Operators

[9] V Samko; J Willcock, J Järvi, D Gregor, A Lumsdaine (February 26, 2006) Doc No: N1968

Lambda expressions and closures for C++

http://www.ijrst.com/
http://www.cert.org/archive/pdf/InsiderThreatSystemDynamics.pdf
http://www.and.org/vstr
http://en.wikipedia.org/wiki/Pete_Becker
http://en.wikipedia.org/wiki/2004
http://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)
http://en.wikipedia.org/wiki/October_5
http://en.wikipedia.org/wiki/2006

