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ABSTRACT

reducing multiplier speed. A similar phenome iti i i ity, occurs when
an nMOS transistor is under positive bias. Both speed, and in the long term,
t to design reliable high-

ance degradation that is due to
lied to a column- or row-bypassing
multiplier.

d various other applications. With advances in technology,

are trying to design multipliers which offer either of the

speed, low power consumption, regularity of layout and
hence less area or bination of them in one multiplier thus making them suitable for
various high speed, power and compact VLSI implementation. Digital multipliers are
widely used in arithfietic units of microprocessors, multimedia and digital signal processors.
The redundant binary number representation has been introduced by Avizienis to perform
signed-digit arithmetic; the RB number has the capability to be represented in different ways.
Fast multipliers can be designed using redundant binary addition trees. The redundant binary
representation has also been applied to a floating-point processor and implemented in VLSI.
High performance RB multipliers have become popular due to the advantageous features,
such as high modularity and carry-free addition .A RB multiplier consists of a RB partial
product (RBPP) generator, a RBPP reduction tree and a RB-NB converter.
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EXISTING SYSTEM

The aging of the sleep transistor is evaluated in terms of current capability

degradation. The latter is then used in the second phase to estimate the delay degradation
of the power-gated logic circuit.

Sleep-Transistor Current Capability Degradation: This analysis consists of a two-step
simulation: the prestress simulation phase, in which we estimate the aging effects on
the pMOS sleep transistor, and the poststress simulation phase, in which the stress
information is integrated into the pMOS device parameters. According to the
properties of the sleep signal (defined by its zero static prg and voltage level),
and the user-defined environmental setup (Vgq age, virtual-Vgg Vvoltage,
temperature, BB Vs, and temperature), the prestress jon computes the aging of

AVy). As shown in Fig. 3.1, duri

degradation is modeled using a v

transistor. At the end of the pre- ns, we have a complete
r NBTI stress. In other

Ortant to identify a set of effective low-
jons of power gating. In the sequel, we present some
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DELAY DEGRADATION OF THE
POWER-GATED LOGIC BLOCK

ion flow forMeep transistor

hen a pMOS (nMQS) transistor is under negative
hen the bias voltage is removed, the recovery
MOS (nMOS) transistor is under constant stress,
BTNYIf both stress and recovery phases exist, it is referred
Vth drift of pMOS (nMOS) transistor due to the static
ed by dc reaction-diffusion (RD) framework. If transistors
are under altern recovery phases, the dc RD model should be modified to an
ac RD model
AVip(t) = Kac x t" = " (4.1)
where « is a function of stress frequency ( f) and signal probability (S). Since the impact of
frequency is relatively insignificant, the effect of signal frequency is ignored. Kpc is a
technology-dependent constant

Koc = A x Tox X /Cox (Ves — Vin) X[1 — Vos/a(Ves— Vin)] xexp (Eox/Eq) x exp(— Eo/KT)
(4.2)

where A is a constant, and Tox is the oxide thickness. Eox is the gate electric field, which is
(Ves—Vu)/Tox; k is the Boltzmann constant, and T is the temperature. Eo and E, are
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technology-independent characteristics of the reaction that are equal to 1.9-2.0 MV/cm and
0.12 eV, respectively.
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Fig. 2. Proposed architecture (md me

Fig. 2 shows our proposed aging-aw.
bit inputs (m is a positive number), one umn- or row-bypassing
multiplier, 2m 1-bit Razor flip- and an AHL circuit. The in@uts of the row-bypassing
itecture, the column- and
eros in either the multiplicand
cycle or two cycles to complete.

es the execution result for the combination circuit using a
w latch catches the execution result using a delayed clock

exceeds the cycle p nd the main flip-flop catches an incorrect result.

If errors occur, t azor flip-flop will set the error signal to 1 to notify the system to
reexecute the operation and notify the AHL circuit that an error has occurred. We use Razor
flip-flops to detect whether an operation that is considered to be a one-cycle pattern can really
finish in a cycle. If not, the operation is reexecuted with two cycles. Although the reexecution
may seem costly, the overall cost is low because the reexecution frequency is low. More
details for the Razor flip-flop can be found. The AHL circuit is the key component in the
aging-ware variable-latency multiplier.
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Fig. 3. Razor flip flops

In summary, our proposed multiplier design
variable-latency design that minimizes the timing wast

can adjust the percentage of one-cycle patt
the aging effect. When the circuit is aged, , the AHL circuit uses the
second judging block to decide if an input is
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CONCLUSION

formance degradation due to

multipliers exhibited the lowest

ion in 32 x 32 VLCB multipliers.

igh enough to cause the drift of metal

The metal atoms will be gradually displaced after a

hanges in the wire width will cause larger resistance

used by the BTI effect and electromigration are considered
together, the de d performance degradation will be more significant. Fortunately, our
proposed variable ultipliers can be used under the influence of both the BTI effect
and electromigration”In addition, our proposed variable latency multipliers have less
performance degradation because variable latency multipliers have less timing waste, but
traditional multipliers need to consider the degradation caused by both the BTI effect and
electromigration and use the worst case delay as the cycle period.
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