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ABSTRACT

In this paper mathematical modeling of Malaria infection ha the basic of possibility of
relapses. The misdiagnosis in terms of false negatives is take analysis consists of the
derivation of state probabilities and the estimation pro
the process of Malaria infection of human host. The
the prevention of Malaria disease.
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1. INTRODUCTION

artasmodelling, but the fact that super infection
gen proved. Before this study, relapses were not studied

classification probabilities, based on data from Garki project
Gramiccia (1980). The data we used for the estimation are from

parameters of the model is made. The estimation procedure is an extension of the path-breaking
ideas introduced by Anderson (1988). This chapter is organized as follows: Section 2 is devoted
to the description of the model. In section 3, misdiagnosis is taken into account. In section 4, we
presented the out line of the estimation procedure. Finally conclusion has been drawn in section
5.
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2. MODEL FOR INFECTION OF A HUMAN HOST

The model studied in this chapter for the infection of a human host is based on a Markov
chain version X(t) of the Ross Transmission Model that deals with the human host. The state
space of X(t) is {0, 1}. These states represent the absence and presence respectively, of malaria
parasites in the blood of the host. The host is said to be in state “1” when an infection bite is
present due to by an infected mosquito or due to a relapse of malaria.ghe host is in state “0” if
the same has recovered from the infection or if he is in latent sate 4" still is infected, but
there are no malaria parasites in his blood. Let us consider e interval {0, T} taking the
parameters as constant. The rate of transition from state ‘0’ t, is h = h; + hs, where h; is

the Garki baseline data, while both the rel
constant over the seasons. For analysis pur
piecewise constant as a function of time.

Let us denote the probabilitig

ell, 1986]. The data give the number of occurrences of the
four events Ol, 10, 11},We ®@8note the probabilities of these events by PP, P; and P,
respectively. T

P, =P {X (0)=0, X (T)=0}
P,=P {X(0)=0, X (T)=1}

P3=P {X () =1 X(T)=0}

P,=P{X(0)=1, X (T)=1}
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Let us determine the time when the host was born and divide the time interval from this
moment until the beginning of the presently considered time interval into contiguous time
intervals in which the parameters are constant. Let us also assume that the five “seasons” occur
during the same time each year. At the time of birth the host is assumed to be uninfected with
p:=0 Then after in caching the contiguous intervals p; can be determined successively to be
equal to p, in preceding interval. The state probability p, in any time interval can be obtained
from p; and the transition probabilities Pmn during the same time interval.

3. MODEL FOR INFECTION WITH MISDIAGNO

Let Y (t) be an observed state as stochastic process j ,1}. The observed state
Y (t) may differ from the true state X (t) because of mis IS i of false negatives.
Singer and Cohen (1980, 1982) also discussed migeliagnosis in terms e two stochastic
processes. Here Y (t) is considered in a time in where the parame process X
(t) are constant. The extent of misdiagnosis afeach survey and age band has estimated by
Nedelman (1988). Nedelman establishes thr@& models i i Ise negativ€s one allowed by
both the microscopist and the supervisor.

Misclassification probabilities can Resdefined in two ways.

... 4(a)

...4A(b)

0<gi<1 i=1.2 (5)

Following Singir agfid Cohen (1980), let us define the misclassification probability « as the
probability that a truly positive host is observed negative. Let the new classification probabilities
at the beginning and end of the time interval be denoted by =; and n, respectively. Then

m-P{Y (0)=0| X (0)} ... 6(a)

m-P{Y (T)=0| X (T)=1} .... 6(b)

60
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These definitions are meaningful only when

0<p, <1,

Thus we arrive at the relation
pim=(Q1-q)tn =12 ... (8)

Here it is assumed that here are false negatives but no false s. It implies that the
sample space at any time (t = 0 or t = T) is partitioned into a n of three disjoint events as

follows.

gMning or the end of the time interval is the
eing observed patent and that of being a false negative.
Ue have the relation

i=1,2 ....(12)

can obtain relation between the probabilities of being patent
the beginning and the end of the time interval. Thus

pi=ai (1-0) i=1,2 ....(13)

This relation (9% is also given by Nedelman.We extend the restrictions of the state
probabilities p; and q; by requiring that the state probabilities all lie in the open unit interval:

0<pi<l, O<qgi<l,i=1,2. ... (14)
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In this case g; = 0 and p; = 1 are excluded. It follows from relations (12) and (13) that the
restrictions (14) of the state probabilities mean that the misclassification probabilities are strictly

less than one i.e.
0<rt.<1, O<m <1, i=1.2 ....(15)

The transition probabilities Py, for the process X (t) are unaffected if the conditioning event
{X (0) = 1} is replaced by any subset. Therefore

Pin=P{X(T)=n[X(0)=1}
=P{X(M=nlY(0)=1}
=P{X(M=n|X(0)=1

From the description of the misclassification j

derive the event probabilities Q; of the obse f the probabilities P3 of the

true process. Now

Q1=P1+3

ssification probabilities =, in terms of the misclassification

edelman and the state probabilities p;. From (7) and (8), we get .

...(19)

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY




International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. I, Jul-Sep e-1SSN: 2249-0604, p-1SSN: 2454-180X

4. THE ESTIMATION PROCEDURE

The estimation procedure is based on the method of successive ML, We discuss Malarial
lymphocytes estimates in each age band over all five-time intervals, as studied discussed by
Nasell (1986). The likelihood function for a given age band is the product of the likelihood
functions for that age band each of the five time intervals. In a given age band and time interval
the data, giving the number of occurrences of each of the four events {&0, Ol, 10, I1} are denoted
by Noo, Noi, Nio, Ny, respectively. The likelihood function for th is determined by the
multinomial distribution. By omitting a term that depends o n the data we find that the
contribution from each time interval to the logarithm of the d function for a given age
band can be written as

log L = Noo log Q1 + No; log Q2 +

where Q; — Qq are the event probabilities for th
expression for the likelihood function in any,
computational processor can be employed.

5. CONCLUDING REMARKS

in Model works well for the

aoe athematical knowledge. In fact this is a

eS 3 e process of malaria infection of human hosts that
accounts for both supe i 8s. \hisdiagnosis, which is also an important factor, is
i d established

Ahlgren D.J. Stein A.C. (1990): Dynamic models of the AIDS epidemic, J.
Simulation, Vaf. 54, No.1, pp 7-20.

Anderson R.M. (1981): Population ecology of infectious diseases agents, Theo. Ecol., 2™
Edn., Oxford, pp 318-355.

Anderson R.M. (1982): Population dynamics of infectious diseases theory and
applications, Chapman and Hall London.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY




International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. I, Jul-Sep e-1SSN: 2249-0604, p-1SSN: 2454-180X

4.  Anderson R.M. (1988): The epidemiology of Malaria infection: variable incubation plus
infectious periods and heterogeneity in sexual behavior, J. Roy. Stat. Soci., Vol. 151, pp.
66-93.

Bailey N.T.J.(1980a): spatial models in the epidemiology of infectious diseases. Lecture
notes in biomathematics, vol. 38, pp. 233-261. new york: springer.
Herbert, J. and Isham, V. (2000): Stochastic host-parasite population models. JMB 40,
343-371.
Macdonald G. (1950): The analysis of infection rates in dise hich super infection
occurs, Trop. Dis. Bull., Vol. 47, pp. 907-915.
Molineaux and Gramiccia, (1974): A malaria model t the African Savannah Bull,
World Health organization, Vol. 50, pp. 347 —357.

iomat, Vol .59, PP.
1-206.
Nasell 1. (1986): Hybrid models of tropj
185-206.
Nasell I. (2000): On the quasi-statio
Boise, Vol. 107, pp. 187-208.

Ross R. (1911):

happenings.) : :

Hethcote, ) Ma na ictious diseases. SIAM Review 42, 599—
653.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY




