
International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

29

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

STATIC VULNERABILITY PATTERN DETECTION IN

LOW LEVEL PROGRAMMING LANGUAGE

Mansour Al-Qattan/PhD Candidate,

Feng Chen/Senior Lecturer

Software Technology Research Laboratory,

De Montfort University, Leicester - UK

ABSTRACT

Vulnerability checking tools in the software industry mostly focus on high-level programming languages, and

vulnerability detection in low-level languages, unfortunately, has been largely sidelined in the case of legacy

systems. This research proposes a method for finding vulnerabilities in an assembly language through wide-

spectrum language (WSL) with FermaT using the static tainted vulnerability analysis technique with the

slicing transformation FermaT engine. Our method decompiles the binary executable file to assembly and

translates the assembly to WSL, and then detects vulnerabilities by combining the FermaT slicing

transformation with taint analysis. The results show that WSL FermaT can detect vulnerability in a binary

executable file easily as FermaT contains multiple transformations that enable developers to meet their

requirements.

Keywords: vulnerabilities, vulnerability detection, static analysis, program transformation, FermaT, wide-

spectrum language.

INTRODUCTION

Nowadays, many companies are attempting to transform legacy systems to higher levels to be

compatible with new technology. However, these programs were developed when security was absent

and programs based on assembly were very difficult to track for vulnerability. It is very costly as there

is a lack of experience with assembly and the endeavour is time consuming, further increasing the

associated financial burden to hire professional people. Over the years, the vulnerabilities posed by the

gaps and loopholes had the possibility of being abused by malicious attacks to intrude upon the

security mechanism. According to CERT and NVD (2016), these vulnerabilities still exist.

Software systems are developing at a rapid rate in terms of size and complexity, leading to a serious

increase in the number of bugs. Such increasing trends in bugs are causing a serious threat for the

software industry in the form of overcoming security vulnerability challenges. One of the most known

and exploitable vulnerabilities throughout the evolution of the software industry is buffer overflow

(BOF) because even the infamous “Heartbleed” vulnerability is a memory BOF. These BOFs allow

the program to crash or execute random codes [3, 14]. This vulnerability has gained serious attention

from researchers in terms of designing and developing tools and techniques for mitigating, i.e., testing

[26], monitoring [12], patching [19] and fixing [5]. Irrespective of the various methods and tools, these

vulnerabilities are still identified in various legacy systems and in the latest programs [21].

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

30

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

Most security attacks, in general, target exploiting the weaknesses in source code. The techniques to

detect the vulnerabilities, therefore, must be integrated in the software development process.

Information from the National Vulnerability Database (NVD) for the historical period, reveal the

proportional increase in vulnerabilities with respect to software size and its complexity. These reports

also uncover the share of BOF vulnerabilities (approximately 10% from 2010–2011, see Fig. 2) and

their impact on the software industry. Finding related coding faults via developing a static

implementation to recognize the semantics of WSL code and identifying vulnerabilities is the purpose

of this work. Static analysis and related tools assist to free a program from BOF vulnerabilities and

various techniques in this research were developed to optimize the code using FermaT with WSL.

Currently, a number of static analysis methods in the literature are being introduced to identify

vulnerabilities because of widespread security breaches in software programming [7, 10, 20]. It is

agreed [4, 27] that characterizing such weaknesses and loopholes to facilitate the further rectification

is the basic purpose of vulnerability analysis. Several evaluations turn out to be effective in detecting

BOF vulnerabilities based on various benchmark programs [16, 31] using static analysis-based tools.

To select a particular method for identifying BOF vulnerabilities, no appropriate detection methods

are defined or confirmed because of a lack of comprehensive comparative studies.

A novel static vulnerability analysis approach to detect BOF vulnerable programs in a low-level

language has been introduced in this work. The present research focuses on improvising vulnerability

detection analysis using WSL because of its excellent capacity to reverse engineer low-level languages

and this helps analyze the severity of the vulnerability of legacy systems during migration. Our

technique is two-fold: 1) finding the vulnerability by combining the slicing transformation with taint

analysis; and 2) boundary checking for the value range size.

The proposed methodology does not simply scan for vulnerability; however, it also essentially utilizes

the transformations to help identifying the threats of the source code accurately, though this is

preliminary in nature and uses FermaT slicing transformation to improve the analysis method of

vulnerability detection when migrated from assembly, which enables us to find the problems in the

assembly code.

RELATED WORK

Various static analysis tools discover security weaknesses when the program is not executing by

scanning the program code based on potential assumptions. Overall, the goal of these static tools

includes extracting and assessing the information of a given source code. In recent times, these tools

have also been utilized to visualize the source code of a given program [12]. Researchers have carried

out a significant number of studies seeking to examine static vulnerabilities of different level language

applications. Early versions of languages, such as C and C++, did not deliver built-in defence against

issues similar to BOF based on a lack of bounds-checking mechanism. Examining and rectifying

problems with accessing and/or overwriting parts of memory using built-in buffer types, such as

arrays (BOF), were a matter of importance. The BOF phenomenon allowed access to parts of memory

that made applications vulnerable to security breaches and resulted in the unexpected. Such

vulnerabilities have been intentionally exploited by hackers [30]. Most of the injections (around 55%)

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

31

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

are of BOFs and are dealt with successfully by utilizing paradigm slicing approaches. The Syntax

Oriented Tools category is comprised of tools that employ and contain lexical analyzers and pattern

matching. ITS4 [20] and RATS [10], for example, follow this kind of approach.

There are many other tools helpful for discovering various security vulnerabilities or to eliminate false

positives. In [22], the basic focus was on analyzing security vulnerability detection of BOFs; however,

[23] employed a vulnerability database similar to ITS4 and RATS. In such scenarios, each tool has its

own way of presenting the results. For example, SSVChecker provides a way to exploit differences of

each analysis report from each tool. Typical static analysis security vulnerability detection tools

document potential security vulnerabilities in a format not easily read by software developers. Code

annotations are typically used to indicate semantic properties of a program source code. These are also

considered to be additional syntax constructs that aid a programmer in discovering the vulnerable

areas in the code through annotation [9]. Splint is a well-known annotating tool utilized extensively to

this end [8]. [29] put forth the necessity to deal with vulnerability patterns at the development stage

compared to post-development issues. These authors’ highlighted two main reasons for such urgency:

1) the issues are expensive to understand and mange if they are not dealt with early; and 2) developers

become ignorant to the vulnerabilities once the complete program is developed.

Various insecure ANSI C library pointers, function calls, pointer arithmetic, arbitrary buffer indexes,

etc. are responsible for BOF vulnerabilities. Some of these tasks explicitly limit the detection process,

analysis and scope. For example, most BOF vulnerabilities are because of library function calls with

unsanitized arguments in a C program [32]. Similarly, Dor et al. observed BOF vulnerabilities based

on string variables [7]. In terms of the majority of BOF vulnerabilities, string pattern matching is very

common [20, 33, 34] and to the result of function calls and arguments. Evans et al. discovered BOF

vulnerabilities stemming from manipulator cleared functions, where annotations are delivered

properly [9]. Most of the pointer arithmetic and condition expressions in a branch or loop are linear

[25].

FERMAT AND WIDE-SPECTRUM LANGUAGE (WSL)

The transformation engine available in FermaT is beneficial for transforming legacy assembler

systems and their applications for present business operations. FermaT possesses various tools for

assembler documentation, transformations, and migration of a program. The latest version of FermaT

tools even helps build the assembler code documentation, functional logic, data analysis, identification

of business rules, and to migrate code from one language to other.

Formally proven programming transformations are included in FermaT to refine or preserve

semantics of a program at the time of changing a program from one form to another. Transformations

in FermaT aid restructuring and simplifying the existing legacy systems and extracting the information

into equivalent high-level language representations. The originality of the code logic is not affected

during the process of restructuring and transforming. A large catalogue included with proven

transformations along with verified mechanical applicable conditions are available in WSL. The other

main feature of the FermaT migration engine is having all mathematically-proven transformations

preserve the semantics of a subjected program.

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

32

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

WSL is designed to support both low-level and high-level languages and is possibly considered to

be a non-executable specification language. Such languages are designed for supporting a defined

program methodology based on program refinement. The advantage of wide-spectrum language is to

be incrementally refined with other intermediate versions of other high- or low-level language

constructs.

PREPOSED METHOD AND ANALYSIS ENVIRONMENT

A. Information of a Program at the Semantic Level

Translation: The investigation plan for our research was considered and translated existing

vulnerabilities code in C language into the following (binary execution file of C code and then to

assembly) WSL in such a way that certain classes of vulnerabilities translate to specific semantic

behaviours in the generated WSL code. Therefore, the vulnerabilities in the existing code can be

determined by analysis of the WSL. High-/low-level modelling of the program is required. We

modelled buffer overflows in WSL to define a single array or sequence which models the memory of

the C program. In this model, a C variable, string, or array is represented by subsequence in the

memory model.

B. FermaT and Proposed Method in Vulnerability Detection

The FermaT transformation engine was employed after translation and rules were established to

detect possible buffer overflow on a string or array which checks the array boundaries and reports on

the program with a notification if the boundaries are exceeded. This program is semantically

equivalent to the original for the initial states in which no buffer overflow occurs; however, this

program changes the semantics upon buffer overflow to those easier to detect.

Vulnerability analysis: the vulnerability detection tool in WSL does not currently have many

useful applications. So, a taint analysis tool for WSL was established to aid determining potential

vulnerabilities to trace these functions, assignments or variables with a FermaT transformation rule,

slicing, in order to isolate and extract the relative nodes.

Taint analysis: the unsafe inputs are found and assigned as tainted. This tainted data is calculated

using a fixed-point algorithm. If such tainted programs are employed in sensitive operations, the

relevant statements are flagged as vulnerable programs.

Slicing transformation method: a backwards/forwards conditioned semantic slice of the program

from the buffer assignment automatically eliminates codes not relevant to the particular assignment

and reduces the amount of work needed to either prove the non-existence/existence of buffer overflow

or compute an example input state and control flow path which may result in buffer overflow. Then,

the vulnerability is identified with a different set of tools that can be applied to the program to inspect

for vulnerabilities (for example, using dataflow analysis). In this way, many slightly different

variations of the same vulnerability can be detected as they are transformed to the same code.

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

33

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

Input Migration
Analysis

Environment
Output

.Exe File/ C –
Program

Assembler File

WSL File

Vulnerability

analysis

Boundary

checking

Analysis ReportAnalysis ReportSource Code

Figure 1: Detection Process Framework

Program slicing patterns generally involve the three following steps: 1) Automatic

decomposition of program; 2) Data analysis; and 3) A control flow. Inter-procedural slicing with

dependence graphs is included with System Dependence Graph (SDG) [11]. The slicing was based on

various program dependency graphs (PDGs), useful for dependency modelling. This includes a main

procedure along with auxiliary procedures using the C language as in Figure 1.

In the program shown in Figure 4, there are three instances of slicing variables x, y and z that

remain slice variables with relevant line even when the rest of the program is changed. A slicing

program is a subset of the main program and the changes in the sliced program do not affect the

originality of the main code program, and the results of the total program will be the same.

Figure 2. Slicing Program to Identify Vulnerabilities

// Simple Program
Void Slicing () 1
{ 2
 int x=0; 3
 int y=0; 4
 int z=6; 5
 If (z>15) 6
 x++; 7
 Else 8
 y++; 9
} 10

// Slice for Variable x in
7

th
 Expression

Void Slicing () 1
{ 2
 int x=0; 3
 int z=6; 5
 If (z>15) 6
 x++; 7
 } 10

// Slice for Variable y in
9

th
 Expression

Void Slicing () 1
{ 2
 int y=0; 4
 int z=6; 5
 If (z>15) 6
 Else 8
 y++; 9
} 10

// Slice for Variable z in
6

th
 Expression

Void Slicing () 1
{ 2
 int z=6; 5
 } 10

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

34

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

Boundary checking analysis: the only way to check for vulnerabilities is by modelling the

other language behaviour. For example, it can occur for BOF by making the index in an array

explicitly behave as a memory location and then start to add values inside the array as stack memory.

Next, one can verify the local variable if the code saves the boundaries, since it can be proven that the

assembly and C code have been translated to WSL and has vulnerabilities. Additionally, a method for

the global variable was employed and saved space based on the previous size of the variable that had

been overwritten. Therefore, the method was verified and started placing the global variable in the

index and if it exceeded that size, we assumed a potential vulnerability. The memory was analysed in

terms of stack and heap requirements.

Regarding a stack, the space is managed efficiently by an array, and there are only local

variables and there is a limit on stack size. With respect to the heap, globally, the variables are

available, and there is not any limit for the size of memory, for that memory can be manageable, a user

can allocate and free the variables, and using realloc() can resize the variables is possible.

The value range was analysed based on the above discussion as well as the range of sensitive

variables ahead of defining the conditions for BOF weaknesses. The value range analysis incorporated

the program’s lower and upper bounds of certain variables. Such facts are used at the time of calling a

function.

Output

We compared the end output results of the C2WSL and ASM2WSL to establish differences

and then compared the detecting result from the boundary and vulnerability analysis in order to make

a decision as a report analysis.

VUNERABILITY RULES AND VULNERABILITY DETECTION

IMPLEMENTATION

Vulnerabilities are usually correlated to valid codes that follow the goals of the programmers

according to the compiler point of view. However, this is a weakness and each vulnerability pattern

consists of numerous fundamentals that are a part of the C language. Certain specific sets of elements

in the C language behave as vulnerability patterns, so by translating to assembly and WSL, they show

more details in WSL. In software language terminology, such elements are usually called “tokens”. By

detecting and examining the tokens responsible for BOFs, one can recognize vulnerable patterns.

Vulnerable attributes (VA) is a new term for holding relevant information on tokens. VAs contain

type, size, scope, etc. and are different from tokens. To detect vulnerabilities of source code, semantic

level information of parts of the code is extracted.

Table 1: VRs Useful for Detecting Vulnerable Code

C Vulnerability Pattern Vulnerability Rule(VR)

strcpy(dst_Var,src_Var); Src_VarSize ≤

dst_VarMaxSize

strncpy(dst_Var,src_Var,n); Min(src_VarSize,n) ≤

dst_VarMaxSize

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

35

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

x="Overwritten"; Size(''Overwritten'') ≤

xMaxSize

strcat(x,Buff); x.Size + Buff.Size ≤

x.MaxSize - 1

memcpy(dst_Var,src_Var,n); Min(src_Var.size,n) ≤

dst_Var.MaxSize

gets(x); ∞ ≤ x.Size

strncat(x,Buff,n); x.Size + min(Buff.size,n)

≤ x.MaxSize - 1

Every given function in Table 1 has some kind of restriction. In VRs, formal constraint language is

utilized and the vulnerability rules implemented in WSL must be in a position to parse and analyze

programs correctly. The analysis tool for the WSL program must have at least one parser compatible

with other compilers. However, lexical analysis tools are confusing based on similar names utilized

for vulnerable functions. In this case, the abstract syntax tree (AST) analysis differentiates identifiers.

For example, when considering the value "size" of a variable characteristic, the size of the first

variable is stored in "size" with a sign corresponding node, “a”. In the following node, the size of the

second variable is assumed to be “b" which is known. In this way, traversing the AST clarifies the

VAs of the program. During the following phase, the extracted values are stored in nodes utilized to

detect vulnerabilities. As each vulnerability is specified as a set of VRs on VAs, it is possible to

determine vulnerabilities by checking the compatibility of every rule. In this step, the AST is traversed

again and the VRs are applied on each of its nodes. If one of these rules is broken, the matching node

is assigned as a vulnerable node. The following rule is applied: VR| a.Size + b.Size ≤ b.MaxSize – l

| False Rule = vulnerability detected. In the WSL code in Figure 3, it contains different sections made

up of basic blocks including a single entry and exit point at both the top and bottom ends, respectively.

These blocks contain a CFG that is useful to define control dependencies for the given program.

Figure 3. Equivalent C Program - WSL Translation from ASM2WSL with a BOF Vulnerability

A FermaT transformation tool was employed on the code in Figure 4 for translating from assembly

to WSL, as depicted in Figure 3. Translation from assembly to WSL produces the action system and in

order to restructure the action system, the transformation engine generated the structured code in

WSL.

//in C language

int main(void)

{

char str1[10];

char

str2[]="abcdefghijklmn";

strcpy(str1,str2);

}

//in WSL language

VAR <str1 := ARRAY(10,0) ,

str2 :="abcdefghijklmn ">:

str1:=str2;

COMMENT:"vunl by

strcpy**";

SKIP

ENDVAR

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

36

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

In Figs. 2 and 3, the BOF vulnerability for strcpy() demonstrates overwriting taking on both sets of

code. The incorrect usage of strcpy() and strcat() is responsible for such overwriting. In particular, the

BOF takes place when cpy or copy has a great amount of data.

Figure 4 also shows a vulnerability pattern as this is clarified with extracting security vulnerabilities

in the source code. In the previous example, the associated syntax pattern is: Variable.size()

(parameter1.size(), parameter2.size()); If the size of parameter2 becomes larger than parameter1, a

BOF occurs. There is clearly a relationship between the variables, and these relationships form another

aspect of VRs.

The buffers are modelled as couples of value ranges by tracing the contents of string variables

using a slicing method. Each string is modelled with two attributes: 1) the number of bytes allocated in

the string buffer (i.e. maxsize) and 2) the number bytes utilized at the present state. As a consequence

of the size and length of the strings, most of the C library functions can be modelled irrespective of

string content. Generally, VRs are considered to be a set of numeric constraints which in general are

applied on a parse tree of a program. The functions working with buffers are tested to identify the

defined constraints. If they match with the defined constraints, then a report warning of BOF

vulnerabilities are generated with the corresponding VR.

Figure 4. Equivalent Assembly Program in WSL

VALIDATION AND EVALUATION

The vulnerability detection tool proposed in this research was tested on a variety of sample programs

to investigate the relative effectiveness, vulnerability and boundary checking analysis and combination

of both the techniques. This research includes three sets of tests: 1) displaying the boundary checking

analysis algorithm and the given sample program analyzed based on the value range method; 2)

different sets of tests conducted to display vulnerabilities using the combined form of taint analysis

and slicing; and 3) the repetition of both steps 1 and 2 to test if both algorithms are enabled. The

//in Assembly language

Mov DWORD PTR

[esp+23], 1684234849

Mov DWORD PTR

[esp+27], 1751606885

Mov DWORD PTR

[esp+31], 1818978921

Mov WORD PTR

[esp+35], 28269

Mov BYTE PTR [esp+37],

0

Lea eax, [esp+23]

Mov DWORD PTR

[esp+4], eax

Lea eax, [esp+38]

Mov DWORD PTR [esp],

eax

//in WSL language

stack[1] := "a"; stack[2] :=

"b";

stack[3] := "c"; stack[4] :=

"d";

stack[5] := "e"; stack[6] :=

"f";

stack[7] := "g"; stack[8] :=

"h";

stack[9] := "i"; stack[10]

:= "j";

stack[11] := "k"; stack[12]

:= "l";

stack[13] := "m";

stack[14] := "n";

eax := stack[1..14];

eax := SLENGHT(eax)

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

37

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

vulnerability analysis mode tries to verify whether the tool was capable of detecting all manners of

vulnerabilities in the given sample program or not. The demonstration of precision and recall for

validations is as follows:

% of functions that are classified correctly:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑵 + 𝑻𝑷

𝑻𝑵 + 𝑭𝑵 + 𝑭𝑷 + 𝑻𝑷

Probability of detecting a vulnerability (recall) =

 𝑷𝑫 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

Probability of misclassifying a good function =

𝑷𝑭 =
𝑭𝑷

𝑻𝑵 + 𝑭𝑷

As a bad function (false alarm), how close is the result to the

 𝑩𝒂𝒍𝒂𝒏𝒄𝒆 = 1 −
 (𝟎−𝑷𝑭)𝟐+ (𝟏−𝑷𝑫)𝟐

 𝟐

Ideal point (pf, pd) = (0, 1)

The addition of our tool improves the accuracy of the vulnerability detection, minimizing the number

of false positives. Now the predicated values can be compared with actual values and can determine

the count of correct predications. This in turn gives us a measure for precision and recall (see Figure

5):

Precision: a measure of predicted vulnerability components accurately. Lower the number of false

positives means higher the precision. The proposed detection tool is efficient enough to predict

vulnerabilities correctly.

Recall: a measure of the potential vulnerable components essentially predicted. High recall means low

false negatives.

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

38

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

True Positives

(TP)

False Positives

(FP)

False

Negatives (FN)

True Negatives

(TN)

Actually has vulnerability reports

Yes No

Precisio

n

Recall

Yes

No

Predicted to have

vulnerability report

Figure 5: Recall and Precision Clarified. Recall is TP/(TP + FN); Precision is TP/(TP + FP)

To test the effectiveness of proposed system, two competing vulnerability detection tools were tested

and compared with the results obtained by the proposed WVD tool. Flawfinder [23] and SPLINT [8]

have been employed extensively for security. Flawfinder uses a pattern matching approach for

detecting vulnerabilities while SPLINT utilizes annotation-based data-flow analysis to detect

vulnerabilities. The results obtained by WVD are tested and compared with the results obtained by

Flawfinder and SPLINT.

CONCLUSION AND FUTURE WORK

Unconscious errors committed by programmers seem to be the primary origin of the majority of

source code vulnerabilities. Hence, a new method was proposed for detecting vulnerabilities using a

static detection method at the semantic level for BOFs. Favourable results were obtained while

detecting vulnerabilities in an assembly program with WSL code. It is important to use an

optimization method in a formal language with a vulnerability detector specific for memory leak

problems, very common in most programming languages. The FermaT transformation engine has

many advantages for building tools based on such requirements. The variety of transformations help in

so many ways, i.e. to demonstrate the correctness of a program’s implementation for the given

specifications, to transform a low-level assembler language program to a more comprehensible high-

level language program and even to abstract specifications. Thus, the combination of these approaches

to detect potential vulnerabilities using a fusion of taint analysis and FermaT's transformations in WSL

presents a powerful method for detecting potential vulnerabilities. The most evident advantage of this

work lies in its ability to detect and analyze vulnerabilities in an effective way at the level of a binary

executable file.

REFERENCES

[1] M. Akbari, S. Berenji and R. Azmi , "Vulnerability detector using parse tree annotation," In

Education technology and computer (ICETC), 2010 2nd international conference on, 2010, pp.

V4-257-V4-261.

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

39

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

[2] [2] A. Atkins, N. Reznikov, L. Ofer, A. Masic, S. Weiner and R. Shahar, "The three-dimensional

structure of anosteocytic lamellated bone of fish," Acta biomaterialia, vol 13, pp. 311–323, 2015.

[3] [3] B. Chess and G. McGraw, "Static analysis for security," IEEE security & privacy, no 6, pp.

76–79, 2004.

[4] [4] M. Cova, V. Felmetsger, G. Banks and G. Vigna, , "Static detection of vulnerabilities in x86

executables," In 2006, pp. 269–278.

[5] [5] C. Dahn and S. Mancoridis, "Using program transformation to secure C programs against

buffer overflows," In 2003, pp. 323.

[6] [6] J. Dehlinger, Q. Feng and L. Hu, "Ssvchecker: Unifying static security vulnerability detection

tools in an eclipse plug-in," In Proceedings of the 2006 OOPSLA workshop on eclipse technology

eXchange, 2006, pp. 30–34.

[7] [7] N. Dor, M. Rodeh and M. Sagiv, "CSSV: Towards a realistic tool for statically detecting all

buffer overflows in C," In ACM sigplan notices, 2003, pp. 155–167.

[8] [8] D. Evans, "Splint home page ", [Online] [Accessed 6/9/2016].

[9] [9] D. Evans and D. Larochelle, "Improving security using extensible lightweight static analysis,"

Software, IEEE, vol 19, no 1, pp. 42–51, 2002.

[10] [10] B. Hackett, M. Das, D. Wang and Z. Yang, , "Modular checking for buffer overflows in the

large," In Proceedings of the 28th international conference on software engineering, 2006, pp.

232–241.

[11] [11] S. Horwitz, T. Reps and D. Binkley, "Interprocedural slicing using dependence graphs,"

ACM transactions on programming languages and systems (TOPLAS), vol 12, no 1, pp. 26–60,

1990.

[12] [12] R.W. Jones and P.H. Kelly, "Backwards-compatible bounds checking for arrays and pointers

in C programs." In Aadebug, 1997, pp. 13–26.

[13] [13] S. Neuhaus, T. Zimmermann, C. Holler and A. Zeller, , "Predicting vulnerable software

components," In Proceedings of the 14th ACM conference on computer and communications

security, 2007, pp. 529–540.

[14] [14] A. One, "Smashing the stack for fun and profit," Phrack magazine, vol 7, no 49, pp. 14–16,

1996.

[15] [15] G. Paul, "7. memory : Stack vs heap ", [Online] [Accessed 6/9/2016].

[16] [16] D. Pozza, R. Sisto, L. Durante and A. Valenzano, "Comparing lexical analysis tools for buffer

overflow detection in network software," In Communication system software and middleware,

2006. comsware 2006. first international conference on, 2006, pp. 1–7.

[17] [17] L. V. SATYANARAYANA and M. C. SEKHAR, "Static analysis tool for detecting web

application vulnerabilities," .

[18] [18] H. Shahriar and M. Zulkernine, , "Classification of static analysis-based buffer overflow

detectors," In 2010 fourth international conference on secure software integration and reliability

improvement companion, 2010, pp. 94–101.

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2016, Vol. No. 6, Issue No. IV, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X

40

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

[19] [19] A. Smirnov and T. Chiueh, "Automatic patch generation for buffer overflow attacks," In

Information assurance and security, 2007. IAS 2007. third international symposium on, 2007, pp.

165–170.

[20] [20] J. Viega, J. Bloch, T. Kohno and G. McGraw, "Token-based scanning of source code for

security problems," ACM transactions on information and system security (TISSEC), vol 5, no 3,

pp. 238–261, 2002.

[21] [21] C. Vulnerabilities, Common vulnerabilities and exposures, 2005.

[22] [22] D.B. Wagner, "Buffer overrun detection", [Online] [Accessed 6/9/2016].

[23] [23] D.A. Wheeler, "Flawfinder home page ", [Online] [Accessed 6/9/2016].

[24] [24] J. Wilander, "Contributions to specification, implementation, and execution of secure

software," 2013.

[25] [25] Y. Xie, A. Chou and D. Engler, "Archer: Using symbolic, path-sensitive analysis to detect

memory access errors," ACM SIGSOFT software engineering notes, vol 28, no 5, pp. 327–336,

2003.

[26] [26] R. Xu, P. Godefroid and R. Majumdar, , "Testing for buffer overflows with length

abstraction," In Proceedings of the 2008 international symposium on software testing and analysis,

2008, pp. 27–38.

[27] [27] F. Yamaguchi, N. Golde, D. Arp and K. Rieck, "Modeling and discovering vulnerabilities

with code property graphs," In Security and privacy (SP), 2014 IEEE symposium on, 2014, pp.

590–604.

[28] [28] M. Zhang, Y. Duan, H. Yin and Z. Zhao, , "Semantics-aware android malware classification

using weighted contextual API dependency graphs," In Proceedings of the 2014 ACM SIGSAC

conference on computer and communications security, 2014, pp. 1105–1116.

[29] [29] M. Zhang and H. Yin, , "AppSealer: Automatic generation of vulnerability-specific patches

for preventing component hijacking attacks in android applications." In Ndss, 2014, .

[30] [30] Y. Zhang, W. Fu, X. Qian and W. Chen, "Program slicing based buffer overflow detection,"

Journal of software engineering and applications, vol 3, no 10, pp. 965, 2010.

[31] [31] M. Zitser, R. Lippmann and T. Leek, , "Testing static analysis tools using exploitable buffer

overflows from open source code," In ACM SIGSOFT software engineering notes, 2004, pp. 97–

106.

[32] [32] D. Wagner, J.S. Foster, E.A. Brewer and A. Aiken, , "A first step towards automated

detection of buffer overrun vulnerabilities." In Ndss, 2000, pp. 2000–2002.

[33] [33] U. Shankar, K. Talwar, J.S. Foster and D. Wagner, "Detecting format string vulnerabilities

with type qualifiers." In USENIX security symposium, 2001, pp. 201–220.

[34] [34] J.J. Tevis and J.A. Hamilton Jr, , "Static analysis of anomalies and security vulnerabilities in

executable files," In Proceedings of the 44th annual southeast regional conference, 2006, pp. 560–

565.

