International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

STATIC VULNERABILITY PATTERN DETECTION IN
LOW LEVEL PROGRAMMING LANGUAGE

Mansour Al-Qattan/PhD Candidate,
Feng Chen/Senior Lecturer
Software Technology Research Laboratory,
De Montfort University, Leicester - UK

ABSTRACT

systems. This research proposes a method for finding vuln

spectrum language (WSL) with FermaT using the stadi

slicing transformation FermaT engine. Our metho

translates the assembly to WSL, and then de

transformation with taint analysis. The results sho detect vulnerability in a binary
executable file easily as FermaT contains multiple able developers to meet their
requirements.

Keywords: vulnerabilities, vulne ¢ i am transformation, FermaT, wide-
spectrum language.

INTRODUCTIO

e endeavour is time consuming, further increasing the
essional people. Over the years, the vulnerabilities posed by the

Software systems are de ing at a rapid rate in terms of size and complexity, leading to a serious
increase in the number @ bugs. Such increasing trends in bugs are causing a serious threat for the
software industry in the form of overcoming security vulnerability challenges. One of the most known
and exploitable vulnerabilities throughout the evolution of the software industry is buffer overflow
(BOF) because even the infamous “Heartbleed” vulnerability is a memory BOF. These BOFs allow
the program to crash or execute random codes [3, 14]. This vulnerability has gained serious attention
from researchers in terms of designing and developing tools and techniques for mitigating, i.e., testing
[26], monitoring [12], patching [19] and fixing [5]. Irrespective of the various methods and tools, these
vulnerabilities are still identified in various legacy systems and in the latest programs [21].

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

Most security attacks, in general, target exploiting the weaknesses in source code. The techniques to
detect the vulnerabilities, therefore, must be integrated in the software development process.
Information from the National Vulnerability Database (NVD) for the historical period, reveal the
proportional increase in vulnerabilities with respect to software size and its complexity. These reports
also uncover the share of BOF vulnerabilities (approximately 10% from 2010-2011, see Fig. 2) and
their impact on the software industry. Finding related coding faults via developing a static
implementation to recognize the semantics of WSL code and identifying vulnerabilities is the purpose
of this work. Static analysis and related tools assist to free a program from BOF vulnerabilities and
various techniques in this research were developed to optimize the cog@wsing FermaT with WSL.
Currently, a number of static analysis methods in the literature ing® introduced to identify
vulnerabilities because of widespread security breaches in soft rogramming [7, 10, 20]. It is

A novel static vulnerability analysis approac
language has been introduced in this work. The on improvising vulnerability
detection analysis using WSL because of i engineer low-level languages

scanning the program ¢ ased on potential assumptions. Overall, the goal of these static tools
includes extracting and ggSessing the information of a given source code. In recent times, these tools
have also been utilized to visualize the source code of a given program [12]. Researchers have carried
out a significant number of studies seeking to examine static vulnerabilities of different level language
applications. Early versions of languages, such as C and C++, did not deliver built-in defence against
issues similar to BOF based on a lack of bounds-checking mechanism. Examining and rectifying
problems with accessing and/or overwriting parts of memory using built-in buffer types, such as
arrays (BOF), were a matter of importance. The BOF phenomenon allowed access to parts of memory
that made applications vulnerable to security breaches and resulted in the unexpected. Such
vulnerabilities have been intentionally exploited by hackers [30]. Most of the injections (around 55%)

30

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

are of BOFs and are dealt with successfully by utilizing paradigm slicing approaches. The Syntax
Oriented Tools category is comprised of tools that employ and contain lexical analyzers and pattern
matching. 1TS4 [20] and RATS [10], for example, follow this kind of approach.

There are many other tools helpful for discovering various security vulnerabilities or to eliminate false
positives. In [22], the basic focus was on analyzing security vulnerability detection of BOFs; however,
[23] employed a vulnerability database similar to ITS4 and RATS. In such scenarios, each tool has its
own way of presenting the results. For example, SSVChecker provides a way to exploit differences of
each analysis report from each tool. Typical static analysis security walnerability detection tools
document potential security vulnerabilities in a format not easily rea ware developers. Code
annotations are typically used to indicate semantic properties of a ram source code. These are also
considered to be additional syntax constructs that aid a pro j0 discovering the vulnerable

ol utilized extensively to

y limit the detection process,
of library function calls with

ANGUAGE (WSL)
le in FermaT is beneficial for transforming legacy assembler
sent business operations. FermaT possesses various tools for
tions, and migration of a program. The latest version of FermaT
tools even helps buil ler code documentation, functional logic, data analysis, identification
of business rules, and to te code from one language to other.

Formally proven pragramming transformations are included in FermaT to refine or preserve
semantics of a program at the time of changing a program from one form to another. Transformations
in FermaT aid restructuring and simplifying the existing legacy systems and extracting the information
into equivalent high-level language representations. The originality of the code logic is not affected
during the process of restructuring and transforming. A large catalogue included with proven
transformations along with verified mechanical applicable conditions are available in WSL. The other
main feature of the FermaT migration engine is having all mathematically-proven transformations
preserve the semantics of a subjected program.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

WSL is designed to support both low-level and high-level languages and is possibly considered to
be a non-executable specification language. Such languages are designed for supporting a defined
program methodology based on program refinement. The advantage of wide-spectrum language is to
be incrementally refined with other intermediate versions of other high- or low-level language
constructs.

PREPOSED METHOD AND ANALYSIS ENVIRONMENT

A. Information of a Program at the Semantic Level
Translation: The investigation plan for our research was co red and translated existing
vulnerabilities code in C language into the following (binary ¢ ion file of C code and then to

SL was established to aid determining potential
ents or variables with a FermaT transformation rule,

relevant statements are as vulnerable programs.

Slicing transformatidn method: a backwards/forwards conditioned semantic slice of the program
from the buffer assignment automatically eliminates codes not relevant to the particular assignment
and reduces the amount of work needed to either prove the non-existence/existence of buffer overflow
or compute an example input state and control flow path which may result in buffer overflow. Then,
the vulnerability is identified with a different set of tools that can be applied to the program to inspect
for vulnerabilities (for example, using dataflow analysis). In this way, many slightly different
variations of the same vulnerability can be detected as they are transformed to the same code.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec

http://www.ijrst.com

e-1SSN: 2249-0604, p-1SSN: 2454-180X

Input

Migration

.Exe File/ C -
Program

A4

Assembler File

A4

Analysis
| Environment |

Vulnerability | |
analysis

\ 4
Boundary
checking

WSL File

Output

Analysis Report

dependence graphs is included

with System De

various program dependency graphs (PDGs), u

/[Simple Program
Void Slicing ()
{

int x=0;
int y=0;
int z=6;
If (z>15)
X++;
Else
Y4+

SBoo~Nouhrwnk

}

A cOwtrol flow. Inter-pr

/[Slice for Variable x in

7" Expression
Void Slicing ()
{

int x=0;
int z=6;
If (z>15)
X++;
}

/I Slice for Variable z in

6" Expression
Void Slicing ()

1
2
int z=6; 5
} 0

/I Slice for Variable y in

9™ Expression
Void Slicing ()

int y=0;
int z=6;
If (z>15)
Else
y++

Bowouosnk

dence Graph (SDG) [11]. The

Figure 2. Slicing Program to Identify Vulnerabilities

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

Boundary checking analysis: the only way to check for vulnerabilities is by modelling the
other language behaviour. For example, it can occur for BOF by making the index in an array
explicitly behave as a memory location and then start to add values inside the array as stack memory.
Next, one can verify the local variable if the code saves the boundaries, since it can be proven that the
assembly and C code have been translated to WSL and has vulnerabilities. Additionally, a method for
the global variable was employed and saved space based on the previous size of the variable that had
been overwritten. Therefore, the method was verified and started placing the global variable in the
index and if it exceeded that size, we assumed a potential vulnerability. The memory was analysed in
terms of stack and heap requirements.

Regarding a stack, the space is managed efficiently by af®array, and there are only local
variables and there is a limit on stack size. With respect tg globally, the variables are
an be manageable, a user

variables ahead of defining the conditions for B
the program’s lower and upper bounds of certai
function.

Output

M2WSL to establish differences
Inerability analysis in order to make

w. However, this is a weakness and each vulnerability pattern
t are a part of the C language. Certain specific sets of elements

detecting and examinin okens responsible for BOFs, one can recognize vulnerable patterns.
Vulnerable attributes (VA is a new term for holding relevant information on tokens. VAs contain
type, size, scope, etc. and are different from tokens. To detect vulnerabilities of source code, semantic
level information of parts of the code is extracted.
Table 1: VRs Useful for Detecting Vulnerable Code
C Vulnerability Pattern Vulnerability Rule(VR)
strcpy(dst_Var,src_Var); Src_VarSize <
dst_VarMaxSize
strncpy(dst_Var,src_Var,n); Min(src_VarSize,n) <
dst_VarMaxSize

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

x="Overwritten"; Size("Overwritten'") <
xMaxSize
strcat(x,Buff); x.Size + Buff.Size <
x.MaxSize - 1
memcpy(dst_Var,src_Var,n); Min(src_Var.size,n) <
dst_Var.MaxSize
gets(x); oo < x.Size
strncat(x,Buff,n); x.Size + min(Buff.size,n)
<x.MaxSize - 1

Every given function in Table 1 has some kind of restriction. In V ormal constraint language is
utilized and the vulnerability rules implemented in WSL must bedia position to parse and analyze
programs correctly. The analysis tool for the WSL program m least one parser compatible

second variable is assumed to be “b" which is

VAs of the program. During the following pha:

detect vulnerabilities. As each vulnerability is s on VAs, it is possible to
his step, the AST is traversed
is broken, the matching node

SL code in Figu
i §oth the top and bottom ends, respectively.

[lin C language [lin WSL language
int main(void) VAR <strl := ARRAY(10,0) ,
{ str2 :="abcdefghijklmn ">:
char str1[10]; strl:=str2;
char COMMENT:"vunl by
str2[]="abcdefghijklmn"; strepy**";
strepy(strl,str2); SKIP
ENDVAR

Figure 3. Equivalent C Program - WSL Translation from ASM2WSL with a BOF Vulnerability

A FermaT transformation tool was employed on the code in Figure 4 for translating from assembly
to WSL, as depicted in Figure 3. Translation from assembly to WSL produces the action system and in
order to restructure the action system, the transformation engine generated the structured code in
WSL.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

In Figs. 2 and 3, the BOF vulnerability for strcpy() demonstrates overwriting taking on both sets of
code. The incorrect usage of strcpy() and strcat() is responsible for such overwriting. In particular, the
BOF takes place when cpy or copy has a great amount of data.

Figure 4 also shows a vulnerability pattern as this is clarified with extracting security vulnerabilities
in the source code. In the previous example, the associated syntax pattern is: Variable.size()
(parameterl.size(), parameter2.size()); If the size of parameter2 becomes larger than parameterl, a
BOF occurs. There is clearly a relationship between the variables, and these relationships form another
aspect of VRs.

The buffers are modelled as couples of value ranges by traci e contents of string variables
using a slicing method. Each string is modelled with two attribu number of bytes allocated in

defined constraints. If they match with the
vulnerabilities are generated with the correspon

[lin Assembly language [lin WSL language
Mov DWORD PTR stack[1] := "a"; stack[2] :=
' [esp+23], 1684234849 "b";
Mov DWORD PTR stack[3] :="
[esp+27], 1751606885 "
Mov DWORD PTR stack[5] := "
[esp+31], 1818978921 "
Mov WORD PTR stack[7] :="
[esp+35], 28269 "

stack[4] :=

Qoo

stack[6] :=

- @

"; stack[8] :=

STQ

' Mov BYTE PTR [esp+37], stack[9] :="i"; stack[10]
O . e,

=1
Lea eax, [esp+23] stack[11] := "k"; stack[12]
Mov DWORD PTR =
[esp+4], eax stack[13] :="m";
Lea eax, [esp+38] stack[14] :="n";
Mov DWORD PTR [esp], eax := stack[1..14];
eax eax := SLENGHT(eax)

ure 4. Equivalent Assembly Program in WSL

VALIDATION AND EVALUATION

The vulnerability detection tool proposed in this research was tested on a variety of sample programs
to investigate the relative effectiveness, vulnerability and boundary checking analysis and combination
of both the techniques. This research includes three sets of tests: 1) displaying the boundary checking
analysis algorithm and the given sample program analyzed based on the value range method; 2)
different sets of tests conducted to display vulnerabilities using the combined form of taint analysis
and slicing; and 3) the repetition of both steps 1 and 2 to test if both algorithms are enabled. The

36

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

vulnerability analysis mode tries to verify whether the tool was capable of detecting all manners of
vulnerabilities in the given sample program or not. The demonstration of precision and recall for
validations is as follows:

% of functions that are classified correctly:

p ~ TN +TP
ceuracy = AN+ FN+ FP+ TP

Probability of detecting a vulnerability (recall) =

TP

PD = 1p T FN

Probability of misclassifying a good function =

As a bad function (false alarm), how close is th

_ 1 _ V(0—PF)2+ (1-PD)?
Balance =1 =

Ideal point (pf, pd) = (0, 1)

The addition of our tool i

Recall: a measure
false negatives.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

Actually has vulnerability reports

Yes No

True Positives | False Positives Precisio
Predicted to have (TP) (FP) n

vulnerability report False True Negatives
Negatives (FN)

Recall

Figure 5: Recall and Precision Clarified. Recall is TP/(TE

have been employed extensively for security.
detecting vulnerabilities while SPLINT utili
vulnerabilities. The results obtained by WVD
Flawfinder and SPLINT.

CONCLUSION AND FUT

psed for detecting vulnerabilities using a
. Favourable results were obtained while

uch requirements. The variety of transformations help in

he correctness of a program’s implementation for the given

| assembler language program to a more comprehensible high-

bstract specifications. Thus, the combination of these approaches

to detect potential vul ilitigs using a fusion of taint analysis and FermaT's transformations in WSL

presents a powerful meth@@for detecting potential vulnerabilities. The most evident advantage of this

work lies in its ability tofdetect and analyze vulnerabilities in an effective way at the level of a binary
executable file.

REFERENCES

1] M. Akbari, S. Berenji and R. Azmi , "Vulnerability detector using parse tree annotation,” In
Education technology and computer (ICETC), 2010 2nd international conference on, 2010, pp.
V4-257-VV4-261.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

[2

[2] A. Atkins, N. Reznikov, L. Ofer, A. Masic, S. Weiner and R. Shahar, "The three-dimensional
structure of anosteocytic lamellated bone of fish," Acta biomaterialia, vol 13, pp. 311-323, 2015.

[3] B. Chess and G. McGraw, "Static analysis for security,” IEEE security & privacy, no 6, pp.
76-79, 2004.

[4] M. Cova, V. Felmetsger, G. Banks and G. Vigna, , "Static detection of vulnerabilities in x86
executables,” In 2006, pp. 269-278.

[5] C. Dahn and S. Mancoridis, "Using program transformation to secure C programs against
buffer overflows,” In 2003, pp. 323.

[6] J. Dehlinger, Q. Feng and L. Hu, "Ssvchecker: Unifying stati vulnerability detection
tools in an eclipse plug-in,” In Proceedings of the 2006 OOPS orkshop on eclipse technology
eXchange, 2006, pp. 30-34.

[7] N. Dor, M. Rodeh and M. Sagiv, "CSSV: Toward isti r statically detecting all

[9] D. Evans and D. Larochelle, "Improvin static analysis,"

Software, IEEE, vol 19, no 1, pp. 42-51, 20

[10] B. Hackett, M. Das, D. Wang and Z. g for buffer overflows in the
ware engineering, 2006, pp.

232-241.

[11] S. Horwitz, T. Reps

ACM transactions on p

1990.

. Durante and A. Valenzano, "Comparing lexical analysis tools for buffer
overflow detection ifi network software,” In Communication system software and middleware,
2006. comsware 2006. first international conference on, 2006, pp. 1-7.

[17] L. V. SATYANARAYANA and M. C. SEKHAR, "Static analysis tool for detecting web
application vulnerabilities,” .

[18] H. Shahriar and M. Zulkernine, , "Classification of static analysis-based buffer overflow
detectors,” In 2010 fourth international conference on secure software integration and reliability
improvement companion, 2010, pp. 94-101.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

International Journal of Research in Science and Technology http://www.ijrst.com

(JRST) 2016, Vol. No. 6, Issue No. 1V, Oct-Dec e-1SSN: 2249-0604, p-1SSN: 2454-180X

[19]

[32]

[33]

[34]

[19] A. Smirnov and T. Chiueh, "Automatic patch generation for buffer overflow attacks,” In
Information assurance and security, 2007. IAS 2007. third international symposium on, 2007, pp.
165-170.

[20] J. Viega, J. Bloch, T. Kohno and G. McGraw, "Token-based scanning of source code for
security problems,” ACM transactions on information and system security (TISSEC), vol 5, no 3,
pp. 238-261, 2002.

[21] C. Vulnerabilities, Common vulnerabilities and exposures, 2005.

[22] D.B. Wagner, "Buffer overrun detection™, [Online] [Accessed 6/92016].

[23] D.A. Wheeler, "Flawfinder home page ", [Online] [Accessed :

[24] J. Wilander, "Contributions to specification, implem ion, and execution of secure
software," 2013.

[25] Y. Xie, A. Chou and D. Engler, "Archer: Using

memory access errors,” ACM SIGSOFT software gngi

2003.

[26] R. Xu, P. Godefroid and R. Maju

abstraction," In Proceedings of the 2008 int

2008, pp. 27-38.
d discovering vulnerabilities
E symposium on, 2014, pp.

590-604.

[28] M. Zhang, Y. Duas

overflows fro
106.

[32] D. Wagner, J. ster, E.A. Brewer and A. Aiken, , "A first step towards automated
detection of buffer ov€rrun vulnerabilities." In Ndss, 2000, pp. 2000-2002.

[33] U. Shankar, K. Talwar, J.S. Foster and D. Wagner, "Detecting format string vulnerabilities
with type qualifiers.” In USENIX security symposium, 2001, pp. 201-220.

[34] J.J. Tevis and J.A. Hamilton Jr, , "Static analysis of anomalies and security vulnerabilities in
executable files,” In Proceedings of the 44th annual southeast regional conference, 2006, pp. 560—
565.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

