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ABSTRACT 

Fractional order dynamic model could model various real materials more adequately than integer order 

ones and provide a more adequate description of many actual dynamical processes. Fractional order 

controller is naturally suitable for these fractional order models. In this paper, a fractional order PID 

controller design method is proposed for a class of fractional order system models. Better performance 

using fractional order PID controllers can be achieved and is demonstrated through two examples with a 

comparison to the classical integer order PID controllers for controlling fractional order systems. 

Index Terms—Fractional order calculus, fractional order controller, fractional order systems, PIλDμ 

controller. 

 

INTRODUCTION 

  The concept of extending classical integer order calculus to non-integer order cases is by no 

means new. For example, it was mentioned in [1] that the earliest systematic studies seem to 

have been made in the beginning and middle of the 19th century by Liouville, Riemann, and 

Holmgren. The most common applications of fractional order differentiation can be found in [2]. 

The concept has attracted the attention of researchers in applied sciences as well. There has been 

a surge of interest in the possible engineering application of fractional order differentiation. 

Examples may be found in [3] and [4]. Some applications including automatic control are 

surveyed in [5].  

      In the field of system identification, studies on real systems have revealed inherent fractional 

order dynamic behavior. The significance of fractional order control is that it is a generalization 

of classical integral order control theory, which could lead to more adequate modeling and more 

robust control performance. Reference [6] put forward simple tuning formulas for the design of 

PID controllers. Some MATLAB tools of the fractional order dynamic system modelling, control 

and filtering can be found in [13]. Reference [7] gives a fractional order PID controller by 

minimizing the integral of the error squares. Some numerical examples of the fracti controller 

was designed to ensure that the closed-loop system is robust to gain variations and the step 
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responses exhibit an iso-damping property. For speed control of two-inertia systems, some 

experimental results were presented in [12]by using a fractional order PI
α
D controller. A 

comparative introduction of four fractional order controllers can be found in [10]. 

In most cases, however, researchers consider the fractional order controller applied to the integer 

order plant to enhance the system control performance. Fractional order systems could model 

various real materials more adequately than integer order ones and thus provide an excellent 

modeling tool in describing many actual dynamical processes. It is intuitively true, as also argued 

in [11], that these fractional order models require the corresponding fractional order controllers 

to achieve excellent performance. In this paper, a fractional order PID controller is used to 

control a class of fractional order systems. A fractional order PID controller design method is 

proposed with two illustrative examples. 

   The remaining part of this paper is organized as follows: in Sec. II, mathematical foundation of 

fractional order controller is briefly introduced; in Sec. III, the fractional order PID controller 

and its property are presented; in Sec. IV, the fractional order PID controller parameter setting is 

proposed with specified gain and phase margins; in Sec. V, two examples are presented to 

illustrate the superior performance achieved by using fractional order controllers. Finally, 

conclusions are drawn in Sec. VI.onal orders were presented in [8]. In [9], a PI
α
 

II. A BRIEF INTRODUCTION TO FRACTIONAL ORDER CALCULUS 

A commonly used definition of the fractional differ-integralis the Riemann-Liouville definition 

 

for m − 1 < α < m where Γ(・) is the well-known Euler’s gamma function. An alternative 

definition, based on the concept of fractional differentiation, is the Gr¨unwald- Letnikov 

definition  given by 

 One can observe that by introducing the notion of 

fractional order operator 
aDα

t f(t), the differentiator and integrator can be unified. Another useful 

tool is the Laplace transform. It is shown in [14] that the Laplace transform of an n-th derivative 

(n ∈ R+) of a signal x(t) relaxed at t = 0 is given by:L_Dnx(t) _= snX(s). So, a fractional order 

differential equation, provided both the signals u(t) and y(t) are relaxedat t = 0, can be expressed 

in a transfer function form (t − τ )1−(m−α) dτ (1)A simple model of a DC motor driving an 

inertial load shows the angular rate of the load, , as the output and applied voltage, , as 

the input. This picture shows a simple model of the DC motor. In this model, the dynamics of the 

motor itself are idealized; for instance, the magnetic field is assumed to be constant. The 

resistance of the circuit is denoted by R and the self-inductance of the armature by L. The 

important thing here is that with this simple model and basic laws of physics, it is possible to 



International Journal of Research in Science And Technology                        http://www.ijrst.com 

(IJRST) 2014, Vol. No. 4, Issue No. III, Jul-Sep                                                          ISSN: 2249-0604 

11 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

develop differential equations that describe the behavior of this electromechanical system. In 

this, the relationships between electric potential and mechanical force are Faraday's law of 

induction and Ampere’s law for the force on a conductor moving through a magnetic field. 

2.1) Mathematical Derivation: The torque , seen at the shaft of the motor is proportional to the 

current i induced by the applied voltage, 

 
Where , the armature constant, is related to physical properties of the motor, such as magnetic 

field strength, the number of turns of wire around the conductor coil, and so on. 

The back (induced) electromotive force, , is a voltage proportional to the angular rate   seen 

at the shaft, 

 
Where , the emf constant, also depends on certain physical properties of the motor. 

The mechanical part of the motor equations is derived using Newton's law, which states that the 

inertial load J times the derivative of angular rate equals the sum of all the torques about the 

motor shaft. The result is this equation, 

 
Where  is a linear approximation for viscous friction. 

Finally, the electrical part of the motor equations can be described by 

 

 

Finally, the electrical part of the motor equations can be described by 

 
Substituting for the back emf 

 
This sequence of equations leads to a set of two differential equations that describe the behavior 

of the motor, the first for the induced current, 

 
And the second for the resulting angular rate, 
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2.2) State-Space Equations for the DC Motor: 

Given the two differential equations (34), (35), you can now develop a state-space representation 

of the DC motor as a dynamic system. The current i and the angular rate are the two states of 

the system. The applied voltage, , is the input to the system, and the angular velocity   is the 

output. 

 

 
The above equations can be converted write into state space equations format. 

 

 
where x is state variable, x = (i, v)

T
, u, control input, u = v, and y, measurement output, y = w. 

A=[-R/L -Kb/L; Km/J -Kf/J]; 

B=[1/L; 0]; 

C=[0 1]; 

D=[0];  

Fig.2 shows the simulation diagram of simplified dc motor model. From fig.2  

 

we know this is a second order linear system with single input and single output. 

III. DESIGN OF ADAPTIVE CONTROLLER 

In this section a model reference adaptive controller will be designed by using 

Lyapunov’s stability theory, which can keep the motor dynamic performance consistent with the 

reference model and make the system insensitive to parameter variations and external 

disturbance, and the steady error goes to zero. The design steps are arranged as follows. 
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First, a proper reference model is selected according to the performance index. Then the 

controller structure is determined and the error equation is deduced. Finally, a Lyapunov 

function is chosen and is used to develop parameter adaptation law, which can make the error 

approximate to zero. 

  Since the plant model has the format as eqn. (38), we assume the reference model as 

follows. 

 
 

Then select a control law as eqn. (41). 

 
 

Thus the model reference adaptive system is shown in fig.3. Now the state equation of the closed 

loop system has been changed to the following equation. 

 

 
 

where the parameters in matrices  and  can be selected in any way, there can also exist some 

constraints between them.  

 

 
Fig. 3 Block diagram of MRAC 

 

 

We suppose the closed loop system can be described with eqn. (42), where matrices Ac and Bc 

depend on the parameter,  and  is a certain combination of  and . If eqn. (42) is equivalent 
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to eqn. (40) at any time, then the original system can follow the reference model completely. A 

sufficient condition is there exist a parameter  that makes eqn. (43) hold. 

 

 
Here we introduce error e, which is defined in eqn.(44). 

 
 

By subtracting eqn.(40) from eqn.(38), we get 

 
Adding and subtracting a term Amx at right – hand side of eqn.(45), we will get 

 

 

 
The last equality of above equation is derived when extract model tracking condition is met. To 

deduce the parameter tuning law, we introduce a function V(e, ). 

 
 

where P is a positive definite matrix.  is obviously a positive definite function. If its first 

order derivative to time is not positive definite, then V is a Lyapunov function. Now we solve the 

derivative of V to time t. 

 

 

 
where Q is a positive definite matrix, which meets the following equation. 

 
 

According to Lyapunov’s stability theory, as long as Am is stable, there always exist such positive 

definite matrices P and Q. 

If we choose the parameter tuning law as follows 

 
Then we will get 
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i.e., the derivative of Lyapunov function V to time t is half negative definite. According to 

Lyapunov’s stability theorem, now the output error between real system and reference model 

will approximate to zero, and the whole system will be asymptotically stable. Therefore, eqn.(50) 

is the Lyapunov’s stability theory-based parameter tuning law for the model reference adaptive 

system. 

IV. SIMULATION RESULTS 

The parameters of the DC motor are listed in table 1. 

Armature resistance R(ohm) 7.72 

Armature inductance L(H) 0.16273 

Back emf constant Kb 1.25 

Mechanical inertia J(Kg/m
2
) 0.0236 

Friction coefficient Bf (N.m./rad/sec.) 0.003 

Torque constant Kt 1.25 

Rated load  FL(Nw.mt) 1.2 to 2.4 

Speed  (rev/min) 1500 

Power P(Kw) 0.5 

 

In this example, we select the following reference model after several trial-and-errors. 

 
The reference model has small overshoot. Assume that output of reference model is ym and input 

is command signal uc. 

The error expression is 

 

 

The liapunov’sfunction is chosen as 

 

 So the adaptive law as  
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The simulation results are shown in figs.4 to 9, respectively 
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Fig.4 Step response waveform of DC motor. 
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Fig.5 Zoom of the response waveform when disturbance occur at 15 sec 
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Fig.6 The waveform of output error between the MRAS and process 
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Fig.7 Control input of the MRAS 
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Fig.8 Tuning of the parameter  of adaptive 

control law. 
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Fig.9 Tuning of the parameter  of adaptive control law. 
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4.2) Comments: 

               In simulation, the system ability of rejecting external disturbance is studied. First, when 

the system is under zero initial condition, the motor can follow the reference model perfectly 

starting from rest to steady state as in fig 4. Then, when the time is 15 sec. the load FL suddenly 

changes from 0 to full load (2.5 N). At this time the model reference adaptive system suffers 

slight oscillation, but it can be stable very soon.Fig.5 is the zoom of response curve when the 

load disturbance is exerted. The MRAS has little deflection from the steady state with small 

magnitude of oscillation, but it is stabilized very soon. The output error between MRAS and 

reference model during the whole dynamic process is illustrated in fig.6. From this figure we can 

see the error occurs mainly at the startup stage and the settling stage while external disturbance is 

exerted. The error goes to zero when the system is at steady state. Fig.7 presents the input signal 

of MRAS, i.e., the motor input voltage. Figs.8 and 9 give the updating process of parameters 

and of the adaptive control law, respectively. The control law can automatically adjust itself 

when external disturbance is exerted to the system. 

V. CONCLUSION 

                In this report simplified mathematical model of permanent magnet linear motor is 

developed. Then model reference adaptive controller has been designed based on the liapunov’s 

stability theory. Simulation results shows that the liapunov’s stability theory based model 

reference adaptive system is more robust and stable, which has better dynamic performance and 

stronger disturbance rejecting ability. The adaptive control law is independent of plant 

parameters and easy to implement. So this method is effective.  
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