(IJRST) 2014, Vol. No. 4, Issue No. II, Apr-Jun

http://www.ijrst.com

ISSN: 2249-0604

STRONGLY W FLAT MODULES OVER MATLIS DOMAIN

Govind Sahu* & M.R. Aloney

Bhagwant University Ajmer (Raj.)* And TIT Bhopal (M.P.)India

Definition: Let R be an arbitrary ring. We will say that a module $M \in R$ -mod is w-flat if the functor $-\bigotimes_R (M_1 + M_2)$ is exact on the category R-module. In other words, if whenever $O \to A \to B \to C \to O$ is a short exact sequence in R-mod. the

 $O \to A \otimes_R (M_1 + M_2) \to B \otimes_R (M_1 + M_2) \to C \otimes_R (M_1 + M_2) \to O \text{ is a short exact sequence. Since}$ $- \otimes_R (M_1 + M_2) \text{ is exact on the R.H.S., the module M is w-flat if any}$ $A \otimes_R (M_1 + M_2) \to B \otimes_R (M_1 + M_2).$

Lemma 1 : Let R be a ring with local units. For any ME mod-R the map $\mu(M_1 + M_2): (M_1 + M_2)$ $\rightarrow (M_1 + M_2)$ given by $\sum_{\substack{i=1\\j=1}}^n (M_i + M_j) \otimes r_i \rightarrow \sum_{\substack{i=1\\j=1}}^n (M_i + M_j) \otimes r$ is an isomorphism of right R-modules.

Proof: Since $(M_1 + M_2)R = (M_1 + M_2)$ this map is clearly an epimorphism. Suppose $\sum_{\substack{i=1 \ j=1}}^n (M_i + M_j)r_i = O$. Let \in be a local unit in R-Satisfying $er_i = r_i e = r_i$ for i=1, 2, 3....n. Then $\sum_{\substack{i=1 \ j=1}}^n (M_i + M_j) \otimes r_i = \sum_{\substack{i=1 \ j=1}}^n (M_i + M_j) \otimes r_i \in \sum_{\substack{i=1 \ j=1}}^n (m_i r_i + m_j r_i) \otimes \in = \otimes \in = O$.

Proof: Let $A = A_1 + A_2$ and $B = B_1 + B_2$.let $O \longrightarrow A \xrightarrow{f} B$ be an exact sequence of right R-modules. Tensoring with the left R-module R, we get a commutative diagram.

http://www.ijrst.com

ISSN: 2249-0604

(IJRST) 2014, Vol. No. 4, Issue No. II, Apr-Jun

$$O - A - \frac{f}{B}$$

$$| \mu_A | \mu_B$$

$$O - A \otimes R - \frac{f \otimes id_R}{B \otimes R}$$

Where id_R is the identity map on R and μ_A , μ_B are the isomorphism defined in lemma 1. Since μ_A , f and μ_B are all monomorphism, so is $f \otimes id_R$. Hence R is w flat in R-Mod.

Proposition 3 : Let A is an ideal of a ring R, The following condition's are equivalent:

- 1. $A = (A_1 + A_2)$ is a pure ideal of R.
- 2. For each finite family $\alpha_i \le i \le n$ of elements of A there exists $t \in A$ such that $\alpha_i = \alpha_i t \forall i, l \le i \le n$.
- 3. For all $\alpha \in A$ there exists $\beta \in A$ such the $\alpha = \alpha\beta$.
- 4. $\frac{R}{A_1 + A_2}$ is a w-flat R-module.

Morever, if A is finitely generated, then A is pure if and only if it is generated by an idempotent. Proof: (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (iv) Let B be an ideal of R. we must prove that $A \cap B = A.B.$ If $a \in (A_1 + A_2) \cap B$ there exists $t \in (A_1 + A_2)$ such that $\alpha = \alpha t$. Hence $\alpha \in (A_1 + A_2)B$.

(iv)
$$\Rightarrow$$
 (iii) If $\alpha \in A_1 + A_2$, then $R\alpha = (A_1 + A_2) \cap R\alpha = (A_1 + A_2)\alpha = A\alpha$.

(i) \Rightarrow (iii) If $\alpha \in A_1 + A_2$, 1 is solution of the equation $\alpha x = \alpha$. So this equation has a solution in $A_1 + A_2 = A$.

(iii) \Rightarrow (ii) Let $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ be elents of $(A_1 + A_2) = A$ we proceed by induction on n. There exists $t \in (A_1 + A_2)$ such that $\alpha_m = t\alpha_m$. By induction hypothesis there exists $S \in A_1 + A_2$ Such that $\alpha_n - t\alpha_n = s(\alpha_n - t\alpha_n) \forall i.l \le i \le (n-1)$.

Now, it is easy to check that $(s+t-st)\alpha_i = \alpha_i \forall i, l \le i \le n$.

http://www.ijrst.com

(IJRST) 2014, Vol. No. 4, Issue No. II, Apr-Jun

ISSN: 2249-0604

(ii) \Rightarrow (i) we consider the following system of equation's $\sum_{i=1}^{n} r_{j,i} r_i = \alpha_j \in A, I \leq J \leq P$.

Assume that $(\beta_1, \beta_2, \beta_3, \dots, \beta_n)$ is a solution of this system in R. There exists $S \in (A_1 + A_2)$ such that $\alpha_j = S\alpha_j \forall j, I \le J \le P$, so $(s\alpha_1, s\alpha_2, s\alpha_3, \dots, s\alpha_n)$ is a solution of this system in $A_1, A_2 = A$.

Lemma : Let $O \rightarrow A \rightarrow B \rightarrow C \rightarrow O$ be an exact sequence such that A and C are strongly w-Flat modules, then B is strongly w-Flat modules.

Proof: Let M be a strongly w-flat modules, by induced exact sequence.

 $Ext_{R}^{1}(C\otimes(M_{1}+M_{2})) \rightarrow Ext_{R}^{1}(B\otimes(M_{1}+M_{2})) \rightarrow Ext_{R}^{1}(A\otimes(M_{1}+M_{2}))$

Singe $Ext_R^1(C \otimes (M_1 + M_2)) = O$ and $Ext_R^1(A \otimes (M_1 + M_2)) = O$ then $Ext_R^1(B \otimes (M_1 + M_2)) = O$

Example : The Z-module Q is strongly Flate Modules Recall that R is called a mantles domain if the projective dimension of Q (or, equivalently, k) is one. The module C is called matlis cotorsion if $Ext_R^1(Q \otimes C) = O$ and M is called strongly w-Flat if $Ext_R^1((M_1 + M_2) \otimes C) = O$ for every Matlis cotorsion R-Module C.

Corollary : Let R is a semi-Dedkind domain. If M is a w-projective R-module and N is weak w-Projective R-Module then $(M_1 + M_2) \otimes_R^N$ is weak w-Projective.

Proof: The is omorphism $Tor_n^R((M_1 + M_2) \otimes N, A) \cong (M_1 + M_2) \otimes Tor_n^R(N, A)$ together pure w-projective and pure w-injective

It follows $\sigma(M_1 + M_2): (M_1 + M_2) \rightarrow E(M_1 + M_2)$ denotes the pure injective envelope of an R-module M where $M = M_1 + M_2$. Recall that an ijective envelope $\sigma(M_1 + M_2): (M_1 + M_2) \rightarrow E(M_1 + M_2)$ has the unique mapping property (1) if for and homomorphism f: $(M_1 + M_2) \rightarrow N$ with kerf = O and N is pure injective, there exist a unique homomorphism g: $E(M_1 + M_2) \rightarrow E$ such that $g\sigma m: f$. where $M_1 + M_2 = M$.

Theorem : The following statements are equivalent.

- (a) R is a priifer domain
- (b) Every R-module is pure w-projective.

http://www.ijrst.com

(IJRST) 2014, Vol. No. 4, Issue No. II, Apr-Jun

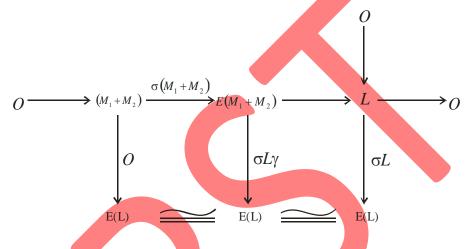
ISSN: 2249-0604

- (c) $Ext_{R}^{-1}(M_{1} + M_{2}, N) = O$ for all pure w-injective R-module N.
- (d) Every pure w-injective R-module has on injective envelope with the unique mapping property.

Proof: (a) \Rightarrow (b) it is easy to verify.

(b) \Rightarrow (c) if every R-module is pure w-projective then $Ext_R^{-1}(M_1 + M_2, N) = O$

(d) \Rightarrow (a) det M be and pure w-injective R-module. We have the following exact commutative diagram.



Note that $\sigma L \gamma \sigma M = O = O \sigma M$, so $\sigma L \gamma = O$ by (d) therefore $L = im(\gamma) \subseteq \ker(\sigma L) = O$ and hence M is pure w-injective where $M = M_1 + M_2$.

Let 1 is a class of R-modules and M is an R-module. A homomorphism $\phi \in Hom_R(N, M)$ with $N \in l$ is called and 1 pure-precover of M if the induces map $HOM_R(1_N, \phi)$:

 $HOM_R(N^1, N) \rightarrow HOM_R(N^1, M_1 + M_2)$ is surjective for all $N^1 \in l$. An 1-pure cover $\phi \in HOM_R(N, M + M_2)$ is called an 1-pure cover if each $\gamma \in HOM_R(N, M_1 + M_2)$ is called an 1-pure cover if each $\gamma \in HOM_R(N, N)$ satisfying $\phi = \phi \gamma$ is an automorphism of N. The class 1 is called a pure precover class if every R-module has an 1-pure precover.

If l is the class of pure w-injective R-modules then an l-envelope is called a pure w-injective envelope.

Proposition : If M is an R-module, then the following are equivalent:

(i) M is pure w-projective; Where $M = M_1 + M_2$

http://www.ijrst.com

(IJRST) 2014, Vol. No. 4, Issue No. II, Apr-Jun

ISSN: 2249-0604

- (ii) M is pure projective with respect to every exact sequence $O \rightarrow A \rightarrow B \rightarrow C \rightarrow O$, where A is pure w-projective.
- (iii) For every exact sequence $O \to K \to F \to M \to O$ with kerf = O where F is pure W- injective, $K \to F$ is a pure w-injective preenvelope of K.
- (iv) M is cokernel of a pure w-injective preenvelope $K \rightarrow F$ with F projective.

Proof: (i) \Rightarrow (ii) Let $O \rightarrow A \rightarrow B \rightarrow C \rightarrow O$ is an exact sequence where A is pure w-injective. Then $Ext_R^{-1}(M_1 + M_2 + A) = O$ by (i), Thus $HOM_R(M_1 + M_2, B) \rightarrow HOM_R(M_1 + M_2, C) \rightarrow O$ is exact, and (ii) holds.

(ii) \Rightarrow (i) For every pure w-injective R-module N, there is a short exact sequence $O \rightarrow N \rightarrow E \rightarrow L \rightarrow O$ with E injective, which induces an exact sequence $HOM_R(M_1 + M_2, E) \rightarrow HOM_R(M_1 + M_2, L) \rightarrow Ext_R^{-1}(M_1 + M_2, N) \rightarrow O$. Since

 $HOM_R(M_1 + M_2, E) \rightarrow HOM_R(M_1 + M_2, L) \rightarrow O$ is exact by (ii), we have $Ext_R^{-1}(M_1 + M_2, N) = O$ and (i) follows.

(i) \Rightarrow (iii) it is easy to verify.

(iii) \Rightarrow (iv) Let $O \rightarrow K \rightarrow P \rightarrow M \rightarrow O$ is an exact sequence with P-pure projective and $M = M_1 + M_2$. Note P is pure w-injective by hypothesis, thus $K \rightarrow P$ is a pure w-injective preenvelope. (iv) \Rightarrow (i) There is an exact sequence $O \rightarrow K \rightarrow P \rightarrow M \rightarrow O$ where $K \rightarrow P$ is a pure w-injective preenvelope with Р projective. It gives the pure rise to exactness of $HOM_{R}(P,N) \rightarrow HOM_{R}(K,N) \rightarrow Ext_{R}^{-1}(M,N) \rightarrow O$ for each pure w-injective R-module N. Note that $HOM_{R}(P, N) \rightarrow HOM_{R}(K, N) \rightarrow O$ is exact by (iv). Hence $Ext_{R}^{-1}(M, N) = O$, as desired. Where $M = M_1 + M_2$

PURE W-PROJECTIVE DIMENSION OVER SEMI-DEDEKIND

Definition: (a) For any R-module M, let pure w-injective dimension P wid (M) of M, denote the smallest integer $n \ge o$ such that $Ext_R^{n+1}(N, M) = O$ for every R-module N of weak dimension ≤ 1 . (If no such n exists, set P wid (M) = ∞)

(b) P wid (R) = Sup { P wid (M) : M is an R-module }.

http://www.ijrst.com

ISSN: 2249-0604

(IJRST) 2014, Vol. No. 4, Issue No. II, Apr-Jun

Lemma : Let R be a semi-Dedekind domain. For an R-module M, the following statement are equivalent:

- (i) P wid (M) \leq n:
- (ii) $Ext_{R}^{n+1}(N,M) = O$ for all R-modules N of W- dimension ≤ 1 .
- (iii) If the sequence $O \to M \to E_o \to E_1 \to \dots \to E_n \to O$ is exact with E_0, E_1, \dots, E_{n-1} Pure winjective, then also E_n is Pure w-injective.

Proof: (i) \Rightarrow (ii) Use induction on n. Clear if P wid (M) = n. If P wid (M) \leq n - 1 resolve N by

 $O \rightarrow K \rightarrow P \rightarrow N \rightarrow O$ with K and P flat. K have P w dimension ≤ 1 and

 $Ext_R^{n+1}(N,M) \cong Ext_R^n(K,M) = O$ by induction hypothesis.

(ii) \Rightarrow (iii) follows from the isomorphism $Ext_R^{n+1}(N,M) \cong Ext_R^{-1}(N,E_n)$.

(iii) \Rightarrow (i) trivial.

Proposition : Let R be a semi-Dedekind domain. For and R-module M and an integer $n \ge 0$, the following are equivalent:

- (i) P wpd M) \leq n;
- (ii) $Ext_R^{n+1}(N,M) = O$ for any pure w-injective R-module N;
- (iii) $Ext_R^{n+j}(M, N) = O$ for any pure w-injective R-module N and $j \ge I$.
- (iv) There exists an exact sequence $O \rightarrow P_n \rightarrow P_{n-1} \rightarrow \dots \rightarrow P_1 \rightarrow P_o \rightarrow M \rightarrow O$ where each P_i is pure w-projective.

Proof: (ii) \Rightarrow (iii) For any pure w-injective R-module N, there is a short exact sequence $O \rightarrow N \rightarrow E \rightarrow L \rightarrow O$, where E is injective. Then the sequence

 $Ext_R^{n+1}(N,L) \rightarrow Ext_R^{n+2}(M,N) \rightarrow Ext_R^{n+2}(M,E) = O$ is exact. Note that L is pure w-injective so $Ext_R^{n+1}(M,N) = O$ by (ii)

Hence $Ext_R^{n+2}(M,N) = O$

- (i) \Rightarrow (ii) is similar to (ii) \Rightarrow (iii)
- (i) \Leftrightarrow (iv) is straightforward
- (ii) \Rightarrow (i) is obvious.

(IJRST) 2014, Vol. No. 4, Issue No. II, Apr-Jun

ISSN: 2249-0604

REFERENCE

- [1] Ding. N: on envelopes with the unique mapping property. Comm.. Alg. 24(4) 1459-1470 (1996).
- [2] Fuchs, L. and salce, L: Modules over Non Noetherian Domain. Math. Surveys and Monographs.
 84 providence R.I. Amer. Math. Society (2001)
- [3] Gilmer, R: multiplicative Ideal theory: Queens paper pure Appl. Math. 90 Kingston: Queens university (1972).
- [4] Lee, S.B: Weak-injective modules. Comm. Alg. 34 361-370 (2006).
- [5] Mao, L. and Ding N. Q: Notes on FP –projective modules and FP-injective modules. Advances in ring theory 151-166 (2005).
- [6] Rotman, J.J: An introduction to Homolugical Algebra. New youk: Academic Press (1979).
- [7] Trlifaj, J: covers, Envelopes and cotorsion theories. Lecture Notes for the workshop Homological Methods in Modules theory cortona (2000).